

The Flask Mega-Tutorial
Miguel Grinberg

2020-05-17

Contents
Preface

1 Who This Book Is For
2 Requirements
3 About The Example Application
4 How To Work With The Example Code
5 Conventions Used In This Book
6 Acknowledgements

Chapter 1 Hello, World!
1.1 Installing Python
1.2 Installing Flask
1.3 A “Hello, World” Flask Application

Chapter 2 Templates
2.1 What Are Templates?
2.2 Conditional Statements
2.3 Loops
2.4 Template Inheritance

Chapter 3 Web Forms
3.1 Introduction to Flask-WTF
3.2 Configuration
3.3 User Login Form
3.4 Form Templates
3.5 Form Views
3.6 Receiving Form Data
3.7 Improving Field Validation
3.8 Generating Links

Chapter 4 Database
4.1 Databases in Flask
4.2 Database Migrations
4.3 Flask-SQLAlchemy Configuration
4.4 Database Models
4.5 Creating The Migration Repository
4.6 The First Database Migration
4.7 Database Upgrade and Downgrade Workflow
4.8 Database Relationships
4.9 Play Time
4.10 Shell Context

Chapter 5 User Logins
5.1 Password Hashing
5.2 Introduction to Flask-Login
5.3 Preparing The User Model for Flask-Login
5.4 User Loader Function
5.5 Logging Users In
5.6 Logging Users Out
5.7 Requiring Users To Login
5.8 Showing The Logged In User in Templates
5.9 User Registration

Chapter 6 Profile Page and Avatars
6.1 User Profile Page
6.2 Avatars
6.3 Using Jinja2 Sub-Templates
6.4 More Interesting Profiles
6.5 Recording The Last Visit Time For a User
6.6 Profile Editor

Chapter 7 Error Handling
7.1 Error Handling in Flask
7.2 Debug Mode
7.3 Custom Error Pages
7.4 Sending Errors by Email
7.5 Logging to a File
7.6 Fixing the Duplicate Username Bug

Chapter 8 Followers
8.1 Database Relationships Revisited

8.1.1 One-to-Many
8.1.2 Many-to-Many
8.1.3 Many-to-One and One-to-One

8.2 Representing Followers
8.3 Database Model Representation
8.4 Adding and Removing “follows”
8.5 Obtaining the Posts from Followed Users

8.5.1 Joins
8.5.2 Filters
8.5.3 Sorting

8.6 Combining Own and Followed Posts
8.7 Unit Testing the User Model
8.8 Integrating Followers with the Application

Chapter 9 Pagination
9.1 Submission of Blog Posts
9.2 Displaying Blog Posts
9.3 Making It Easier to Find Users to Follow
9.4 Pagination of Blog Posts
9.5 Page Navigation
9.6 Pagination in the User Profile Page

Chapter 10 Email Support
10.1 Introduction to Flask-Mail
10.2 Flask-Mail Usage
10.3 A Simple Email Framework
10.4 Requesting a Password Reset
10.5 Password Reset Tokens
10.6 Sending a Password Reset Email
10.7 Resetting a User Password
10.8 Asynchronous Emails

Chapter 11 Facelift
11.1 CSS Frameworks
11.2 Introducing Bootstrap
11.3 Using Flask-Bootstrap
11.4 Rendering Bootstrap Forms
11.5 Rendering of Blog Posts
11.6 Rendering Pagination Links
11.7 Before And After

Chapter 12 Dates and Times
12.1 Timezone Hell
12.2 Timezone Conversions
12.3 Introducing Moment.js and Flask-Moment
12.4 Using Moment.js

Chapter 13 I18n and L10n
13.1 Introduction to Flask-Babel
13.2 Marking Texts to Translate In Python Source Code
13.3 Marking Texts to Translate In Templates
13.4 Extracting Text to Translate
13.5 Generating a Language Catalog
13.6 Updating the Translations
13.7 Translating Dates and Times
13.8 Command-Line Enhancements

Chapter 14 Ajax
14.1 Server-side vs. Client-side
14.2 Live Translation Workflow
14.3 Language Identification
14.4 Displaying a “Translate” Link
14.5 Using a Third-Party Translation Service
14.6 Ajax From The Server
14.7 Ajax From The Client

Chapter 15 A Better Application Structure
15.1 Current Limitations
15.2 Blueprints

15.2.1 Error Handling Blueprint
15.2.2 Authentication Blueprint
15.2.3 Main Application Blueprint

15.3 The Application Factory Pattern
15.4 Unit Testing Improvements
15.5 Environment Variables
15.6 Requirements File

Chapter 16 Full-Text Search
16.1 Introduction to Full-Text Search Engines
16.2 Installing Elasticsearch
16.3 Elasticsearch Tutorial
16.4 Elasticsearch Configuration
16.5 A Full-Text Search Abstraction
16.6 Integrating Searches with SQLAlchemy
16.7 Search Form
16.8 Search View Function

Chapter 17 Deployment on Linux
17.1 Traditional Hosting
17.2 Creating an Ubuntu Server
17.3 Using a SSH Client
17.4 Password-less Logins
17.5 Securing Your Server
17.6 Installing Base Dependencies
17.7 Installing the Application
17.8 Setting Up MySQL
17.9 Setting Up Gunicorn and Supervisor
17.10 Setting Up Nginx
17.11 Deploying Application Updates
17.12 Raspberry Pi Hosting

Chapter 18 Deployment on Heroku
18.1 Hosting on Heroku
18.2 Creating Heroku account
18.3 Installing the Heroku CLI
18.4 Setting Up Git
18.5 Creating a Heroku Application
18.6 The Ephemeral File System
18.7 Working with a Heroku Postgres Database
18.8 Logging to stdout
18.9 Compiled Translations
18.10 Elasticsearch Hosting
18.11 Updates to Requirements
18.12 The Procfile
18.13 Deploying the Application
18.14 Deploying Application Updates

Chapter 19 Deployment on Docker Containers
19.1 Installing Docker CE
19.2 Building a Container Image
19.3 Starting a Container
19.4 Using Third-Party “Containerized” Services

19.4.1 Adding a MySQL Container
19.4.2 Adding a Elasticsearch Container

19.5 The Docker Container Registry
19.6 Deployment of Containerized Applications

Chapter 20 Some JavaScript Magic
20.1 Server-side Support
20.2 Introduction to the Bootstrap Popover Component
20.3 Executing a Function On Page Load
20.4 Finding DOM Elements with Selectors
20.5 Popovers and the DOM
20.6 Hover Events
20.7 Ajax Requests
20.8 Popover Creation and Destruction

Chapter 21 User Notifications
21.1 Private Messages

21.1.1 Database Support for Private Messages
21.1.2 Sending a Private Message
21.1.3 Viewing Private Messages

21.2 Static Message Notification Badge
21.3 Dynamic Message Notification Badge
21.4 Delivering Notifications to Clients

Chapter 22 Background Jobs
22.1 Introduction to Task Queues
22.2 Using RQ

22.2.1 Creating a Task
22.2.2 Running the RQ Worker
22.2.3 Executing Tasks
22.2.4 Reporting Task Progress

22.3 Database Representation of Tasks
22.4 Integrating RQ with the Flask Application
22.5 Sending Emails from the RQ Task
22.6 Task Helpers
22.7 Implementing the Export Task
22.8 Export Functionality in the Application
22.9 Progress Notifications
22.10 Deployment Considerations

22.10.1 Deployment on a Linux Server
22.10.2 Deployment on Heroku
22.10.3 Deployment on Docker

Chapter 23 Application Programming Interfaces (APIs)
23.1 REST as a Foundation of API Design

23.1.1 Client-Server
23.1.2 Layered System
23.1.3 Cache
23.1.4 Code On Demand
23.1.5 Stateless
23.1.6 Uniform Interface

23.2 Implementing an API Blueprint
23.3 Representing Users as JSON Objects
23.4 Representing Collections of Users
23.5 Error Handling
23.6 User Resource Endpoints

23.6.1 Retrieving a User
23.6.2 Retrieving Collections of Users
23.6.3 Registering New Users
23.6.4 Editing Users

23.7 API Authentication
23.7.1 Tokens In the User Model
23.7.2 Token Requests
23.7.3 Protecting API Routes with Tokens
23.7.4 Revoking Tokens

23.8 API Friendly Error Messages

Preface
Back in 2012, I decided to start a software development blog. Because
I am a do-it-yourselfer at heart, instead of using Blogger or
WordPress, I sat down and wrote my own blog engine, using a then
little known web framework called Flask. I knew I wanted to code it in
Python, and I first tried Django, which was (and still is) the most
popular Python web framework. But unfortunately Django seemed too
big and too structured for my needs. I’ve found that Flask gave me as
much power, while being small, unopinionated and unobtrusive.

Writing my own blog engine was an awesome experience that left me
with a lot of ideas for topics I wanted to blog about. Instead of writing
individual articles about all these topics, I decided to write a long,
overarching tutorial that Python beginners can use to learn web
development. And just like that, the Flask Mega-Tutorial was born!

The book that you have in your hands is a new edition of the original
tutorial, revised, updated and expanded in 2017 thanks to the support
of almost 600 Kickstarter backers.

1 Who This Book Is For
This book will take you on a journey through a realistic web
development project, from start to end. If you have just a little bit of
experience coding in Python and understand how the web works at a
high-level, you should have no trouble using this book to learn how to
develop your own web applications using Python and Flask.

The tutorial assumes that you are familiar with the command line in
your operating system. If you aren’t, then I recommend that you learn
how to execute programs, create directories, copy files, etc. using the
command line before you begin.

If you have learned Flask with my original Mega-Tutorial, this new
edition will introduce you to new features in Flask that did not exist
when I wrote the original articles, as well as give you an updated look
at important topics such as authentication, full-text search and
internationalization. In addition to the revised content, this version of
the tutorial includes new chapters that cover topics that have become
relevant in recent times, such as APIs, background jobs and
containers.

2 Requirements
The example code that accompanies this book can be used on any
platform on which Python runs, so Mac OS X, Linux and Microsoft
Windows are all valid choices. I have tested all the code extensively on
Python 3.5 and 3.6, so these are the versions I recommend you to use.
Unless specifically noted, the code also runs on Python 2.7, but keep in
mind that Python 2.7 will not be supported past the year 2020, so you
should seriously consider migrating to Python 3 as soon as possible.

If you are using a Microsoft Windows computer, you probably know
that the world of web development is dominated by Unix-based
workflows, and you may rightly feel that you are at a disadvantage.
That should not be a major concern when you work with this book,
because when necessary, specific instructions that apply to Windows
users are noted. My assumption is that if you are working on Windows
you will be using the command prompt to work with your application.
If you prefer to use PowerShell, you will need to translate commands
to the appropriate syntax for that shell.

This may be hard to accept if you work on Windows, but I think you
will have a better experience if you force yourself to learn Unix, which
can be done right on your Windows computer without making any
drastic configuration changes. My recommendation is that you install
Unix tools on your Windows system and adopt the Unix workflow. If
you are interested in doing this, one option is the Windows Subsystem
for Linux (WSL), an officially supported feature of Windows 10 that
adds an Ubuntu Linux system that runs in parallel with your Windows
operating system and includes Python 3.5. If your system is not
compatible with WSL, then another very good option is Cygwin, an
open-source POSIX emulation layer that includes Windows ports of a
large number of Unix tools, including Python. I have worked with
Python under both WSL and Cygwin and find them perfectly adequate

https://msdn.microsoft.com/en-us/commandline/wsl/about
https://cygwin.org

for web development work.

3 About The Example
Application
The application that I’m going to develop as part of this tutorial is a
nicely featured microblogging server that I decided to call Microblog.
Pretty creative, I know.

Just so that you have some idea of what you will learn if you follow this
tutorial, these are some of the topics that I will cover:

User management, including secure password handling, logins,
user profiles and avatars.
Database management and database migration support
Handling of user input via web forms
Pagination of long lists of items
Full-text search
Email notifications to users
HTML templates
Working with dates and times
Internationalization and localization
Installation on a production server
Working with Docker containers
Application Programming Interfaces
Push notifications
Background jobs

I hope this application will serve as a template that you can use for
writing your own web applications.

4 How To Work With The
Example Code
I have released the complete source code for this project on the
following GitHub repository:
https://github.com/miguelgrinberg/microblog. There is a commit in
this repository for each chapter.

The way I envision you will work through this tutorial is by writing the
application on your own, based on the instructions provided in the
text, at least for the first few chapters. You can certainly copy and
paste portions of code from the text or from GitHub to save some
typing, but I think it is important that you familiarize yourself with the
task of coding a Flask application by writing the code yourself, instead
of just downloading the files from GitHub (unless explicitly instructed
to do so).

The GitHub repository can serve as a reference if you get lost and can’t
get the application to work. You can compare your files against the
code in the repository link provided with each chapter if you get stuck
with a problem you can’t solve.

5 Conventions Used In This
Book
This book frequently includes commands that you need to type in a
terminal session. For these commands, a $ will be shown as a
command prompt. This is a standard prompt for many Linux shells,
but may look unfamiliar to Microsoft Windows users. For example:

$ python hello.py

hello

In a lot of the terminal examples, you are going to be required to have
an activated virtual environment (do not worry if you don’t know what
this is yet, you will find out very soon!). For those examples, the
prompt will appear as (venv) $:

(venv) $ python hello.py

hello

You will also need to interact with the Python interactive interpreter.
Examples that show statements that need to be entered in a Python
interpreter session will use a >>> prompt, as in the following example:

>>> print('hello!')

hello

In all cases, lines that are not prefixed with a $ or >>> prompt, are
output printed by the command, and should not be typed.

6 Acknowledgements
This project would not have been possible without the amazing
support of my Kickstarter backers. My deepest thanks go to Dhritiman
Sagar, Alex Anderson, Bahrom Matyakubov, Dave Finnegan, John
Gann, John W. O’Brien, Kojo Idrissa, Mark Anders, Raph, Fredrik
Dahlgren, Jorge García García, Todd Twiggs, Pietro P Peterlongo,
Chris Davis, Alexandre Harano, Bob Jordan, Chris Dent, Chris Jones,
CptJason, Daniel Abeles, Daniel Plas Rivera, Dipanjan Sarkar, Eric
Chou, Eric Ho, Graham Williamson, jiho Bak, John Sobanski, Kai
Mies, Len Sumnler, Marc P. Rostock, Michael Sim, Nick Brandaleone,
Nnamdi E. Anyanwu, R. Da Costa Faro, Reimund Klain, Scott
Strattner, SNC Cloud Dev (twitter.com/snc_clouddev), T81, Tobias
Siebenlist, Viet Le, Ed Wachtel, Shivas Jayaram, JVA, GenLots.com,
Martin Thorsen Ranang, DFW Python, Allan Swanepoel, Andrej
Stabenow, Anthony Bourguignon, Aron Filbert, Auke Bakker, Bryson
Tyrrell, Chuck Woodraska, Colin R. Crossman, Dario Varotto, Dax
Morrow, Eric G. Barron, Everett Toews, Fisherworks, flasky
mcflaskface, Iain Hunter, Jeremy Barisch Rooney, Jesse Liles,
Jindrich K. Smitka, Jing Sheng Pang, Karthik Ramakrishnan, Kevin
Porterfield (KP), Leonel Decunta, Martynas Budvytis, Mathew Divine,
Matt Makai (Full Stack Python), Matt Trentini, Michael from Talk
Python, Nana B Okyere, Nathan Sanders, Nduka Obinna Azubuike,
Neal Duncan, Philip Penquitt, Rémi Debette, Romer Ibo, Ryan Hagan,
Scott Andrew Underwood, Stephan Simon, Steve Bartell, Timothy
DAuria, Vitaly Popovich, Yi Luo and the remaining 484 backers.

Chapter 1

Hello, World!
Welcome! You are about to start on a journey to learn how to create
web applications with Python and the Flask framework. In this first
chapter, you are going to learn how to set up a Flask project. By the
end of this chapter you are going to have a simple Flask web
application running on your computer!

All the code examples presented in this book are hosted on a GitHub
repository. Downloading the code from GitHub can save you a lot of
typing, but I strongly recommend that you type the code yourself, at
least for the first few chapters. Once you become more familiar with
Flask and the example application you can access the code directly
from GitHub if the typing becomes too tedious.

At the beginning of each chapter, I’m going to give you three GitHub
links that can be useful while you work through the chapter. The
Browse link will open the GitHub repository for Microblog at the
place where the changes for the chapter you are reading were added,
without including any changes introduced in future chapters. The Zip
link is a download link for a zip file including the entire application up
to and including the changes in the chapter. The Diff link will open a
graphical view of all the changes that were made in the chapter you are
about to read.

The GitHub links for this chapter are: Browse, Zip, Diff.

https://python.org
http://flask.pocoo.org
https://github.com/miguelgrinberg/microblog/tree/v0.1
https://github.com/miguelgrinberg/microblog/archive/v0.1.zip
https://github.com/miguelgrinberg/microblog/compare/v0.0...v0.1

1.1 Installing Python
If you don’t have Python installed on your computer, go ahead and
install it now. If your operating system does not provide you with a
Python package, you can download an installer from the Python
official website. If you are using Microsoft Windows along with WSL
or Cygwin, note that you will not be using the Windows native version
of Python, but a Unix-friendly version that you need to obtain from
Ubuntu (if you are using WSL) or from Cygwin.

To make sure your Python installation is functional, you can open a
terminal window and type python3, or if that does not work, just
python. Here is what you should expect to see:

$ python3

Python 3.5.2 (default, Nov 17 2016, 17:05:23)

[GCC 5.4.0 20160609] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> _

The Python interpreter is now waiting at an interactive prompt, where
you can enter Python statements. In future chapters you will learn
what kinds of things this interactive prompt is useful for. But for now,
you have confirmed that Python is installed on your system. To exit
the interactive prompt, you can type exit() and press Enter. On the
Linux and Mac OS X versions of Python you can also exit the
interpreter by pressing Ctrl-D. On Windows, the exit shortcut is Ctrl-Z
followed by Enter.

http://python.org/download/

1.2 Installing Flask
The next step is to install Flask, but before I go into that I want to tell
you about the best practices associated with installing Python
packages.

In Python, packages such as Flask are available in a public repository,
from where anybody can download them and install them. The official
Python package repository is called PyPI, which stands for Python
Package Index (some people also refer to this repository as the “cheese
shop”). Installing a package from PyPI is very simple, because Python
comes with a tool called pip that does this work (in Python 2.7 pip
does not come bundled with Python and needs to be installed
separately).

To install a package on your machine, you use pip as follows:

$ pip install <package-name>

Interestingly, this method of installing packages will not work in most
cases. If your Python interpreter was installed globally for all the users
of your computer, chances are your regular user account is not going
to have permission to make modifications to it, so the only way to
make the command above work is to run it from an administrator
account. But even without that complication, consider what happens
when you install a package as above. The pip tool is going to download
the package from PyPI, and then add it to your Python installation.
From that point on, every Python script that you have on your system
will have access to this package. Imagine a situation where you have
completed a web application using version 0.11 of Flask, which was the
most current version of Flask when you started, but now has been
superseeded by version 0.12. You now want to start a second
application, for which you’d like to use the 0.12 version, but if you

https://pypi.python.org/pypi

replace the 0.11 version that you have installed you risk breaking your
older application. Do you see the problem? It would be ideal if it was
possible to install Flask 0.11 to be used by your old application, and
also install Flask 0.12 for your new one.

To address the issue of maintaining different versions of packages for
different applications, Python uses the concept of virtual
environments. A virtual environment is a complete copy of the Python
interpreter. When you install packages in a virtual environment, the
system-wide Python interpreter is not affected, only the copy is. So the
solution to have complete freedom to install any versions of your
packages for each application is to use a different virtual environment
for each application. Virtual environments have the added benefit that
they are owned by the user who creates them, so they do not require
an administrator account.

Let’s start by creating a directory where the project will live. I’m going
to call this directory microblog, since that is the name of the
application:

$ mkdir microblog

$ cd microblog

If you are using a Python 3 version, virtual environment support is
included in it, so all you need to do to create one is this:

$ python3 -m venv venv

With this command, I’m asking Python to run the venv package, which
creates a virtual environment named venv. The first venv in the
command is the name of the Python virtual environment package, and
the second is the virtual environment name that I’m going to use for
this particular environment. If you find this confusing, you can
replace the second venv with a different name that you want to assign
to your virtual environment. In general I create my virtual
environments with the name venv in the project directory, so whenever
I cd into a project I find its corresponding virtual environment.

Note that in some operating systems you may need to use python

instead of python3 in the command above. Some installations use
python for Python 2.x releases and python3 for the 3.x releases, while
others map python to the 3.x releases.

After the command completes, you are going to have a directory
named venv where the virtual environment files are stored.

If you are using any version of Python older than 3.4 (and that
includes the 2.7 release), virtual environments are not supported
natively. For those versions of Python, you need to download and
install a third-party tool called virtualenv before you can create virtual
environments. Once virtualenv is installed, you can create a virtual
environment with the following command:

$ virtualenv venv

Regardless of the method you used to create it, you should have your
virtual environment created. Now you have to tell the system that you
want to use it, and you do that by activating it. To activate your brand
new virtual environment you use the following command:

$ source venv/bin/activate

(venv) $ _

If you are using a Microsoft Windows command prompt window, the
activation command is slightly different:

$ venv\Scripts\activate

(venv) $ _

When you activate a virtual environment, the configuration of your
terminal session is modified so that the Python interpreter stored
inside it is the one that is invoked when you type python. Also, the
terminal prompt is modified to include the name of the activated
virtual environment. The changes made to your terminal session are
all temporary and private to that session, so they will not persist when
you close the terminal window. If you work with multiple terminal
windows open at the same time, it is perfectly fine to have different
virtual environments activated on each one.

https://virtualenv.pypa.io

Now that you have a virtual environment created and activated, you
can finally install Flask in it:

(venv) $ pip install flask

If you want to confirm that your virtual environment now has Flask
installed, you can start the Python interpreter and import Flask into it:

>>> import flask

>>> _

If this statement does not give you any errors you can congratulate
yourself, as Flask is installed and ready to be used.

1.3 A “Hello, World” Flask
Application
If you go to the Flask website, you are welcomed with a very simple
example application that has just five lines of code. Instead of
repeating that trivial example, I’m going to show you a slightly more
elaborate one that will give you a good base structure for writing larger
applications.

The application will exist in a package. In Python, a sub-directory that
includes a __init__.py file is considered a package, and can be
imported. When you import a package, the __init__.py executes and
defines what symbols the package exposes to the outside world.

Let’s create a package called app, that will host the application. Make
sure you are in the microblog directory and then run the following
command:

(venv) $ mkdir app

The __init__.py for the app package is going to contain the following
code:

Listing 1.1: app/__init__.py: Flask application instance

from flask import Flask

app = Flask(__name__)

from app import routes

The script above simply creates the application object as an instance of
class Flask imported from the flask package. The __name__ variable
passed to the Flask class is a Python predefined variable, which is set

http://flask.pocoo.org/

to the name of the module in which it is used. Flask uses the location
of the module passed here as a starting point when it needs to load
associated resources such as template files, which I will cover in
Chapter 2. For all practical purposes, passing __name__ is almost
always going to configure Flask in the correct way. The application
then imports the routes module, which doesn’t exist yet.

One aspect that may seem confusing at first is that there are two
entities named app. The app package is defined by the app directory
and the __init__.py script, and is referenced in the from app import
routes statement. The app variable is defined as an instance of class
Flask in the __init__.py script, which makes it a member of the app
package.

Another peculiarity is that the routes module is imported at the
bottom and not at the top of the script as it is always done. The
bottom import is a workaround to circular imports, a common
problem with Flask applications. You are going to see that the routes
module needs to import the app variable defined in this script, so
putting one of the reciprocal imports at the bottom avoids the error
that results from the mutual references between these two files.

So what goes in the routes module? The routes are the different URLs
that the application implements. In Flask, handlers for the application
routes are written as Python functions, called view functions. View
functions are mapped to one or more route URLs so that Flask knows
what logic to execute when a client requests a given URL.

Here is the first view function for this application, which you need to
write in a new module named app/routes.py:

Listing 1.2: app/routes.py: Home page route

from app import app

@app.route('/')

@app.route('/index')

def index():

 return "Hello, World!"

This view function is actually pretty simple, it just returns a greeting as
a string. The two strange @app.route lines above the function are
decorators, a unique feature of the Python language. A decorator
modifies the function that follows it. A common pattern with
decorators is to use them to register functions as callbacks for certain
events. In this case, the @app.route decorator creates an association
between the URL given as an argument and the function. In this
example there are two decorators, which associate the URLs / and
/index to this function. This means that when a web browser requests
either of these two URLs, Flask is going to invoke this function and
pass the return value of it back to the browser as a response. If this
does not make complete sense yet, it will in a little bit when you run
this application.

To complete the application, you need to have a Python script at the
top-level that defines the Flask application instance. Let’s call this
script microblog.py, and define it as a single line that imports the
application instance:

Listing 1.3: microblog.py: Main application module

from app import app

Remember the two app entities? Here you can see both together in the
same sentence. The Flask application instance is called app and is a
member of the app package. The from app import app statement
imports the app variable that is a member of the app package. If you
find this confusing, you can rename either the package or the variable
to something else.

Just to make sure that you are doing everything correctly, below you
can see a diagram of the project structure so far:

microblog/

 venv/

 app/

 __init__.py

 routes.py

 microblog.py

Believe it or not, this first version of the application is now complete!
Before running it, though, Flask needs to be told how to import it, by
setting the FLASK_APP environment variable:

(venv) $ export FLASK_APP=microblog.py

If you are using the Microsoft Windows command prompt, use set
instead of export in the command above.

Are you ready to be blown away? You can run your first web
application, with the following command:

(venv) $ flask run

 * Serving Flask app "microblog"

 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

After the server initializes it will wait for client connections. The
output from flask run indicates that the server is running on IP
address 127.0.0.1, which is always the address of your own computer.
This address is so common that is also has a simpler name that you
may have seen before: localhost. Network servers listen for
connections on a specific port number. Applications deployed on
production web servers typically listen on port 443, or sometimes 80 if
they do not implement encryption, but access to these ports require
administration rights. Since this application is running in a
development environment, Flask uses the freely available port 5000.
Now open up your web browser and enter the following URL in the
address field:

 http://localhost:5000/

Alternatively you can use this other URL:

 http://localhost:5000/index

Do you see the application route mappings in action? The first URL
maps to /, while the second maps to /index. Both routes are
associated with the only view function in the application, so they
produce the same output, which is the string that the function returns.

If you enter any other URL you will get an error, since only these two
URLs are recognized by the application.

When you are done playing with the server you can just press Ctrl-C to
stop it.

Congratulations, you have completed the first big step to become a
web developer!

Before I end this chapter, I want to mention one more thing. Since
environment variables aren’t remembered across terminal sessions,
you may find tedious to always have to set the FLASK_APP environment
variable when you open a new terminal window. Starting with version
1.0, Flask allows you to register environment variables that you want
to be automatically imported when you run the flask command. To
use this option you have to install the python-dotenv package:

(venv) $ pip install python-dotenv

Then you can just write the environment variable name and value in a

.flaskenv file in the top-level directory of the project:

Listing 1.4: .flaskenv: Environment variables for flask command

FLASK_APP=microblog.py

Doing this is optional. If you prefer to set the environment variable
manually, that is perfectly fine, as long as you always remember to do
it.

Chapter 2

Templates
After you complete Chapter 1, you should have a fully working, yet
simple web application that has the following file structure:

microblog\

 venv\

 app\

 __init__.py

 routes.py

 microblog.py

To run the application you set the FLASK_APP=microblog.py in your
terminal session, and then execute flask run. This starts a web server
with the application, which you can open by typing the
http://localhost:5000/ URL in your web browser’s address bar.

In this chapter you will continue working on the same application, and
in particular, you are going to learn how to generate more elaborate
web pages that have a complex structure and many dynamic
components. If anything about the application or the development
workflow so far isn’t clear, please review Chapter 1 again before
continuing.

The GitHub links for this chapter are: Browse, Zip, Diff.

https://github.com/miguelgrinberg/microblog/tree/v0.2
https://github.com/miguelgrinberg/microblog/archive/v0.2.zip
https://github.com/miguelgrinberg/microblog/compare/v0.1...v0.2

2.1 What Are Templates?
I want the home page of my microblogging application to have a
heading that welcomes the user. For the moment, I’m going to ignore
the fact that the application does not have the concept of users yet, as
this is going to come later. Instead, I’m going to use a mock user,
which I’m going to implement as a Python dictionary, as follows:

user = {'username': 'Miguel'}

Creating mock objects is a useful technique that allows you to
concentrate on one part of the application without having to worry
about other parts of the system that don’t exist yet. I want to design
the home page of my application, and I don’t want the fact that I don’t
have a user system in place to distract me, so I just make up a user
object so that I can keep going.

The view function in the application returns a simple string. What I
want to do now is expand that returned string into a complete HTML
page, maybe something like this:

Listing 2.1: app/routes.py: Return complete HTML page from view
function

from app import app

@app.route('/')

@app.route('/index')

def index():

 user = {'username': 'Miguel'}

 return '''

<html>

 <head>

 <title>Home Page - Microblog</title>

 </head>

 <body>

 <h1>Hello, ''' + user['username'] + '''!</h1>

 </body>

</html>'''

If you are not familiar with HTML, I recommend that you read HTML
Markup on Wikipedia for a brief introduction.

Update the view function as shown above and give the application a
try to see how it looks in your browser.

I hope you agree with me that the solution used above to deliver
HTML to the browser is not good. Consider how complex the code in
this view function will become when I have the blog posts from users,
which are going to constantly change. The application is also going to
have more view functions that are going to be associated with other
URLs, so imagine if one day I decide to change the layout of this
application, and have to update the HTML in every view function.
This is clearly not an option that will scale as the application grows.

If you could keep the logic of your application separate from the layout
or presentation of your web pages, then things would be much better
organized, don’t you think? You could even hire a web designer to
create a killer web site while you code the application logic in Python.

https://en.wikipedia.org/wiki/HTML#Markup

Templates help achieve this separation between presentation and
business logic. In Flask, templates are written as separate files, stored
in a templates folder that is inside the application package. So after
making sure that you are in the microblog directory, create the
directory where templates will be stored:

(venv) $ mkdir app/templates

Below you can see your first template, which is similar in functionality
to the HTML page returned by the index() view function above. Write
this file in app/templates/index.html:

Listing 2.2: app/templates/index.html: Main page template

<html>

 <head>

 <title>{{ title }} - Microblog</title>

 </head>

 <body>

 <h1>Hello, {{ user.username }}!</h1>

 </body>

</html>

This is a mostly standard, very simply HTML page. The only
interesting thing in this page is that there are a couple of placeholders
for the dynamic content, enclosed in {{ ... }} sections. These
placeholders represent the parts of the page that are variable and will
only be known at runtime.

Now that the presentation of the page was offloaded to the HTML
template, the view function can be simplified:

Listing 2.3: app/routes.py: Use render_template() function

from flask import render_template

from app import app

@app.route('/')

@app.route('/index')

def index():

 user = {'username': 'Miguel'}

 return render_template('index.html', title='Home', user=user)

This looks much better, right? Try this new version of the application
to see how the template works. Once you have the page loaded in your
browser, you may want to view the source HTML and compare it
against the original template.

The operation that converts a template into a complete HTML page is
called rendering. To render the template I had to import a function
that comes with the Flask framework called render_template(). This
function takes a template filename and a variable list of template
arguments and returns the same template, but with all the
placeholders in it replaced with actual values.

The render_template() function invokes the Jinja2 template engine
that comes bundled with the Flask framework. Jinja2 substitutes {{
... }} blocks with the corresponding values, given by the arguments
provided in the render_template() call.

http://jinja.pocoo.org

2.2 Conditional Statements
You have seen how Jinja2 replaces placeholders with actual values
during rendering, but this is just one of many powerful operations
Jinja2 supports in template files. For example, templates also support
control statements, given inside {% ... %} blocks. The next version of
the index.html template adds a conditional statement:

Listing 2.4: app/templates/index.html: Conditional statement in
template

<html>

 <head>

 {% if title %}

 <title>{{ title }} - Microblog</title>

 {% else %}

 <title>Welcome to Microblog!</title>

 {% endif %}

 </head>

 <body>

 <h1>Hello, {{ user.username }}!</h1>

 </body>

</html>

Now the template is a bit smarter. If the view function forgets to pass
a value for the title placeholder variable, then instead of showing an
empty title the template will provide a default one. You can try how
this conditional works by removing the title argument in the
render_template() call of the view function.

2.3 Loops
The logged in user will probably want to see recent posts from
connected users in the home page, so what I’m going to do now is
extend the application to support that.

Once again, I’m going to rely on the handy fake object trick to create
some users and some posts to show:

Listing 2.5: app/routes.py: Fake posts in view function

from flask import render_template

from app import app

@app.route('/')

@app.route('/index')

def index():

 user = {'username': 'Miguel'}

 posts = [

 {

 'author': {'username': 'John'},

 'body': 'Beautiful day in Portland!'

 },

 {

 'author': {'username': 'Susan'},

 'body': 'The Avengers movie was so cool!'

 }

]

 return render_template('index.html', title='Home', user=user, posts=posts)

To represent user posts I’m using a list, where each element is a
dictionary that has author and body fields. When I get to implement
users and blog posts for real I’m going to try to preserve these field
names as much as possible, so that all the work I’m doing to design
and test the home page template using these fake objects will continue
to be valid when I introduce real users and posts.

On the template side I have to solve a new problem. The list of posts
can have any number of elements, it is up to the view function to
decide how many posts are going to be presented in the page. The

template cannot make any assumptions about how many posts there
are, so it needs to be prepared to render as many posts as the view
sends in a generic way.

For this type of problem, Jinja2 offers a for control structure:

Listing 2.6: app/templates/index.html: for-loop in template

<html>

 <head>

 {% if title %}

 <title>{{ title }} - Microblog</title>

 {% else %}

 <title>Welcome to Microblog</title>

 {% endif %}

 </head>

 <body>

 <h1>Hi, {{ user.username }}!</h1>

 {% for post in posts %}

 <div><p>{{ post.author.username }} says: {{ post.body }}</p></div>

 {% endfor %}

 </body>

</html>

Simple, right? Give this new version of the application a try, and be
sure to play with adding more content to the posts list to see how the
template adapts and always renders all the posts the view function
sends.

2.4 Template Inheritance
Most web applications these days have a navigation bar at the top of
the page with a few frequently used links, such as a link to edit your
profile, to login, logout, etc. I can easily add a navigation bar to the
index.html template with some more HTML, but as the application
grows I will be needing this same navigation bar in other pages. I
don’t really want to have to maintain several copies of the navigation
bar in many HTML templates, it is a good practice to not repeat
yourself if that is possible.

Jinja2 has a template inheritance feature that specifically addresses
this problem. In essence, what you can do is move the parts of the
page layout that are common to all templates to a base template, from
which all other templates are derived.

So what I’m going to do now is define a base template called base.html
that includes a simple navigation bar and also the title logic I
implemented earlier. You need to write the following template in file
app/templates/base.html:

Listing 2.7: app/templates/base.html: Base template with
navigation bar

<html>

 <head>

 {% if title %}

 <title>{{ title }} - Microblog</title>

 {% else %}

 <title>Welcome to Microblog</title>

 {% endif %}

 </head>

 <body>

 <div>Microblog: Home</div>

 <hr>

 {% block content %}{% endblock %}

 </body>

</html>

In this template I used the block control statement to define the place
where the derived templates can insert themselves. Blocks are given a
unique name, which derived templates can reference when they
provide their content.

With the base template in place, I can now simplify index.html by
making it inherit from base.html:

Listing 2.8: app/templates/index.html: Inherit from base template

{% extends "base.html" %}

{% block content %}

 <h1>Hi, {{ user.username }}!</h1>

 {% for post in posts %}

 <div><p>{{ post.author.username }} says: {{ post.body }}</p></div>

 {% endfor %}

{% endblock %}

Since the base.html template will now take care of the general page
structure, I have removed all those elements from index.html and left
only the content part. The extends statement establishes the
inheritance link between the two templates, so that Jinja2 knows that
when it is asked to render index.html it needs to embed it inside
base.html. The two templates have matching block statements with
name content, and this is how Jinja2 knows how to combine the two
templates into one. Now if I need to create additional pages for the
application, I can create them as derived templates from the same
base.html template, and that is how I can have all the pages of the
application sharing the same look and feel without duplication.

Chapter 3

Web Forms
In Chapter 2 I created a simple template for the home page of the
application, and used fake objects as placeholders for things I don’t
have yet, like users or blog posts. In this chapter I’m going to address
one of the many holes I still have in this application, specifically how
to accept input from users through web forms.

Web forms are one of the most basic building blocks in any web
application. I will be using forms to allow users to submit blog posts,
and also for logging in to the application.

Before you proceed with this chapter, make sure you have the
microblog application as I left it in the previous chapter installed, and
that you can run it without any errors.

The GitHub links for this chapter are: Browse, Zip, Diff.

https://github.com/miguelgrinberg/microblog/tree/v0.3
https://github.com/miguelgrinberg/microblog/archive/v0.3.zip
https://github.com/miguelgrinberg/microblog/compare/v0.2...v0.3

3.1 Introduction to Flask-
WTF
To handle the web forms in this application I’m going to use the Flask-
WTF extension, which is a thin wrapper around the WTForms package
that nicely integrates it with Flask. This is the first Flask extension
that I’m presenting to you, but it is not going to be the last. Extensions
are a very important part of the Flask ecosystem, as they provide
solutions to problems that Flask is intentionally not opinionated
about.

Flask extensions are regular Python packages that are installed with
pip. You can go ahead and install Flask-WTF in your virtual
environment:

(venv) $ pip install flask-wtf

http://packages.python.org/Flask-WTF
https://wtforms.readthedocs.io/

3.2 Configuration
So far the application is very simple, and for that reason I did not need
to worry about its configuration. But for any applications except the
simplest ones, you are going to find that Flask (and possibly also the
Flask extensions that you use) offer some amount of freedom in how
to do things, and you need to make some decisions, which you pass to
the framework as a list of configuration variables.

There are several formats for the application to specify configuration
options. The most basic solution is to define your variables as keys in
app.config, which uses a dictionary style to work with variables. For
example, you could do something like this:

app = Flask(__name__)

app.config['SECRET_KEY'] = 'you-will-never-guess'

... add more variables here as needed

While the above syntax is sufficient to create configuration options for
Flask, I like to enforce the principle of separation of concerns, so
instead of putting my configuration in the same place where I create
my application I will use a slightly more elaborate structure that allows
me to keep my configuration in a separate file.

A format that I really like because it is very extensible, is to use a class
to store configuration variables. To keep things nicely organized, I’m
going to create the configuration class in a separate Python module.
Below you can see the new configuration class for this application,
stored in a config.py module in the top-level directory.

Listing 3.1: config.py: Secret key configuration

import os

class Config(object):

 SECRET_KEY = os.environ.get('SECRET_KEY') or 'you-will-never-guess'

Pretty simple, right? The configuration settings are defined as class
variables inside the Config class. As the application needs more
configuration items, they can be added to this class, and later if I find
that I need to have more than one configuration set, I can create
subclasses of it. But don’t worry about this just yet.

The SECRET_KEY configuration variable that I added as the only
configuration item is an important part in most Flask applications.
Flask and some of its extensions use the value of the secret key as a
cryptographic key, useful to generate signatures or tokens. The Flask-
WTF extension uses it to protect web forms against a nasty attack
called Cross-Site Request Forgery or CSRF (pronounced “seasurf”). As
its name implies, the secret key is supposed to be secret, as the
strength of the tokens and signatures generated with it depends on no
person outside of the trusted maintainers of the application knowing
it.

The value of the secret key is set as an expression with two terms,
joined by the or operator. The first term looks for the value of an
environment variable, also called SECRET_KEY. The second term, is just
a hardcoded string. This is a pattern that you will see me repeat often
for configuration variables. The idea is that a value sourced from an
environment variable is preferred, but if the environment does not
define the variable, then the hardcoded string is used instead. When
you are developing this application, the security requirements are low,
so you can just ignore this setting and let the hardcoded string be
used. But when this application is deployed on a production server, I
will be setting a unique and difficult to guess value in the environment,
so that the server has a secure key that nobody else knows.

Now that I have a config file, I need to tell Flask to read it and apply it.
That can be done right after the Flask application instance is created
using the app.config.from_object() method:

Listing 3.2: app/__init__.py: Flask configuration

from flask import Flask

from config import Config

http://en.wikipedia.org/wiki/Cross-site_request_forgery

app = Flask(__name__)

app.config.from_object(Config)

from app import routes

The way I’m importing the Config class may seem confusing at first,
but if you look at how the Flask class (uppercase “F”) is imported from
the flask package (lowercase “f”) you’ll notice that I’m doing the same
with the configuration. The lowercase “config” is the name of the
Python module config.py, and obviously the one with the uppercase
“C” is the actual class.

As I mentioned above, the configuration items can be accessed with a
dictionary syntax from app.config. Here you can see a quick session
with the Python interpreter where I check what is the value of the
secret key:

>>> from microblog import app

>>> app.config['SECRET_KEY']

'you-will-never-guess'

3.3 User Login Form
The Flask-WTF extension uses Python classes to represent web forms.
A form class simply defines the fields of the form as class variables.

Once again having separation of concerns in mind, I’m going to use a
new app/forms.py module to store my web form classes. To begin,
let’s define a user login form, which asks the user to enter a username
and a password. The form will also include a “remember me” check
box, and a submit button:

Listing 3.3: app/forms.py: Login form

from flask_wtf import FlaskForm

from wtforms import StringField, PasswordField, BooleanField, SubmitField

from wtforms.validators import DataRequired

class LoginForm(FlaskForm):

 username = StringField('Username', validators=[DataRequired()])

 password = PasswordField('Password', validators=[DataRequired()])

 remember_me = BooleanField('Remember Me')

 submit = SubmitField('Sign In')

Most Flask extensions use a flask_<name> naming convention for their
top-level import symbol. In this case, Flask-WTF has all its symbols
under flask_wtf. This is where the FlaskForm base class is imported
from at the top of app/forms.py.

The four classes that represent the field types that I’m using for this
form are imported directly from the WTForms package, since the
Flask-WTF extension does not provide customized versions. For each
field, an object is created as a class variable in the LoginForm class.
Each field is given a description or label as a first argument.

The optional validators argument that you see in some of the fields is
used to attach validation behaviors to fields. The DataRequired
validator simply checks that the field is not submitted empty. There

are many more validators available, some of which will be used in
other forms.

3.4 Form Templates
The next step is to add the form to an HTML template so that it can be
rendered on a web page. The good news is that the fields that are
defined in the LoginForm class know how to render themselves as
HTML, so this task is fairly simple. Below you can see the login
template, which I’m going to store in file app/templates/login.html:

Listing 3.4: app/templates/login.html: Login form template

{% extends "base.html" %}

{% block content %}

 <h1>Sign In</h1>

 <form action="" method="post" novalidate>

 {{ form.hidden_tag() }}

 <p>

 {{ form.username.label }}

 {{ form.username(size=32) }}

 </p>

 <p>

 {{ form.password.label }}

 {{ form.password(size=32) }}

 </p>

 <p>{{ form.remember_me() }} {{ form.remember_me.label }}</p>

 <p>{{ form.submit() }}</p>

 </form>

{% endblock %}

For this template I’m reusing one more time the base.html template as
shown in Chapter 2, through the extends template inheritance
statement. I will actually do this with all the templates, to ensure a
consistent layout that includes a top navigation bar across all the
pages of the application.

This template expects a form object instantiated from the LoginForm
class to be given as an argument, which you can see referenced as
form. This argument will be sent by the login view function, which I
still haven’t written.

The HTML <form> element is used as a container for the web form.
The action attribute of the form is used to tell the browser the URL
that should be used when submitting the information the user entered
in the form. When the action is set to an empty string the form is
submitted to the URL that is currently in the address bar, which is the
URL that rendered the form on the page. The method attribute
specifies the HTTP request method that should be used when
submitting the form to the server. The default is to send it with a GET
request, but in almost all cases, using a POST request makes for a better
user experience because requests of this type can submit the form data
in the body of the request, while GET requests add the form fields to the
URL, cluttering the browser address bar. The novalidate attribute is
used to tell the web browser to not apply validation to the fields in this
form, which effectively leaves this task to the Flask application
running in the server. Using novalidate is entirely optional, but for
this first form it is important that you set it because this will allow you
to test server-side validation later in this chapter.

The form.hidden_tag() template argument generates a hidden field
that includes a token that is used to protect the form against CSRF
attacks. All you need to do to have the form protected is include this
hidden field and have the SECRET_KEY variable defined in the Flask
configuration. If you take care of these two things, Flask-WTF does
the rest for you.

If you’ve written HTML web forms in the past, you may have found it
odd that there are no HTML fields in this template. This is because
the fields from the form object know how to render themselves as
HTML. All I needed to do was to include {{ form.<field_name>.label
}} where I wanted the field label, and {{ form.<field_name>() }}
where I wanted the field. For fields that require additional HTML
attributes, those can be passed as arguments. The username and
password fields in this template take the size as an argument that will
be added to the <input> HTML element as an attribute. This is how
you can also attach CSS classes or IDs to form fields.

3.5 Form Views
The final step before you can see this form in the browser is to code a
new view function in the application that renders the template from
the previous section.

So let’s write a new view function mapped to the /login URL that
creates a form, and passes it to the template for rendering. This view
function can also go in the app/routes.py module with the previous
one:

Listing 3.5: app/routes.py: Login view function

from flask import render_template

from app import app

from app.forms import LoginForm

...

@app.route('/login')

def login():

 form = LoginForm()

 return render_template('login.html', title='Sign In', form=form)

What I did here is import the LoginForm class from forms.py,
instantiated an object from it, and sent it down to the template. The
form=form syntax may look odd, but is simply passing the form object
created in the line above (and shown on the right side) to the template
with the name form (shown on the left). This is all that is required to
get form fields rendered.

To make it easy to access the login form, the base template can include
a link to it in the navigation bar:

Listing 3.6: app/templates/base.html: Login link in navigation bar

<div>

 Microblog:

 Home

 Login

</div>

At this point you can run the application and see the form in your web
browser. With the application running, type http://localhost:5000/
in the browser’s address bar, and then click on the “Login” link in the
top navigation bar to see the new login form. Pretty cool, right?

3.6 Receiving Form Data
If you try to press the submit button the browser is going to display a
“Method Not Allowed” error. This is because the login view function
from the previous section does one half of the job so far. It can display
the form on a web page, but it has no logic to process data submitted
by the user yet. This is another area where Flask-WTF makes the job
really easy. Here is an updated version of the view function that
accepts and validates the data submitted by the user:

Listing 3.7: app/routes.py: Receiving login credentials

from flask import render_template, flash, redirect

@app.route('/login', methods=['GET', 'POST'])

def login():

 form = LoginForm()

 if form.validate_on_submit():

 flash('Login requested for user {}, remember_me={}'.format(

 form.username.data, form.remember_me.data))

 return redirect('/index')

 return render_template('login.html', title='Sign In', form=form)

The first new thing in this version is the methods argument in the route
decorator. This tells Flask that this view function accepts GET and POST
requests, overriding the default, which is to accept only GET requests.
The HTTP protocol states that GET requests are those that return
information to the client (the web browser in this case). All the
requests in the application so far are of this type. POST requests are
typically used when the browser submits form data to the server (in
reality GET requests can also be used for this purpose, but it is not a
recommended practice). The “Method Not Allowed” error that the
browser showed you before, appears because the browser tried to send
a POST request and the application was not configured to accept it. By
providing the methods argument, you are telling Flask which request

methods should be accepted.

The form.validate_on_submit() method does all the form processing
work. When the browser sends the GET request to receive the web page
with the form, this method is going to return False, so in that case the
function skips the if statement and goes directly to render the template
in the last line of the function.

When the browser sends the POST request as a result of the user
pressing the submit button, form.validate_on_submit() is going to
gather all the data, run all the validators attached to fields, and if
everything is all right it will return True, indicating that the data is
valid and can be processed by the application. But if at least one field
fails validation, then the function will return False, and that will cause
the form to be rendered back to the user, like in the GET request case.
Later I’m going to add an error message when validation fails.

When form.validate_on_submit() returns True, the login view function
calls two new functions, imported from Flask. The flash() function is
a useful way to show a message to the user. A lot of applications use
this technique to let the user know if some action has been successful
or not. In this case, I’m going to use this mechanism as a temporary
solution, because I don’t have all the infrastructure necessary to log
users in for real yet. The best I can do for now is show a message that
confirms that the application received the credentials.

The second new function used in the login view function is
redirect(). This function instructs the client web browser to
automatically navigate to a different page, given as an argument. This
view function uses it to redirect the user to the index page of the
application.

When you call the flash() function, Flask stores the message, but
flashed messages will not magically appear in web pages. The
templates of the application need to render these flashed messages in
a way that works for the site layout. I’m going to add these messages
to the base template, so that all the templates inherit this
functionality. This is the updated base template:

Listing 3.8: app/templates/base.html: Flashed messages in base
template

<html>

 <head>

 {% if title %}

 <title>{{ title }} - microblog</title>

 {% else %}

 <title>microblog</title>

 {% endif %}

 </head>

 <body>

 <div>

 Microblog:

 Home

 Login

 </div>

 <hr>

 {% with messages = get_flashed_messages() %}

 {% if messages %}

 {% for message in messages %}

 {{ message }}

 {% endfor %}

 {% endif %}

 {% endwith %}

 {% block content %}{% endblock %}

 </body>

</html>

Here I’m using a with construct to assign the result of calling
get_flashed_messages() to a messages variable, all in the context of the
template. The get_flashed_messages() function comes from Flask,
and returns a list of all the messages that have been registered with
flash() previously. The conditional that follows checks if messages has
some content, and in that case, a element is rendered with each
message as a list item. This style of rendering does not look great,
but the topic of styling the web application will come later.

An interesting property of these flashed messages is that once they are
requested once through the get_flashed_messages function they are
removed from the message list, so they appear only once after the
flash() function is called.

This is a great time to try the application one more time and test how
the form works. Make sure you try submitting the form with the

username or password fields empty, to see how the DataRequired
validator halts the submission process.

3.7 Improving Field
Validation
The validators that are attached to form fields prevent invalid data
from being accepted into the application. The way the application
deals with invalid form input is by re-displaying the form, to let the
user make the necessary corrections.

If you tried to submit invalid data, I’m sure you noticed that while the
validation mechanisms work well, there is no indication given to the
user that something is wrong with the form, the user simply gets the
form back. The next task is to improve the user experience by adding a
meaningful error message next to each field that failed validation.

In fact, the form validators generate these descriptive error messages
already, so all that is missing is some additional logic in the template
to render them.

Here is the login template with added field validation messages in the
username and password fields:

Listing 3.9: app/templates/login.html: Validation errors in login
form template

{% extends "base.html" %}

{% block content %}

 <h1>Sign In</h1>

 <form action="" method="post" novalidate>

 {{ form.hidden_tag() }}

 <p>

 {{ form.username.label }}

 {{ form.username(size=32) }}

 {% for error in form.username.errors %}

 [{{ error }}]

 {% endfor %}

 </p>

 <p>

 {{ form.password.label }}

 {{ form.password(size=32) }}

 {% for error in form.password.errors %}

 [{{ error }}]

 {% endfor %}

 </p>

 <p>{{ form.remember_me() }} {{ form.remember_me.label }}</p>

 <p>{{ form.submit() }}</p>

 </form>

{% endblock %}

The only change I’ve made is to add for loops right after the username
and password fields that render the error messages added by the
validators in red color. As a general rule, any fields that have
validators attached will have any error messages that result from
validation added under form.<field_name>.errors. This is going to be
a list, because fields can have multiple validators attached and more
than one may be providing error messages to display to the user.

If you try to submit the form with an empty username or password,
you will now get a nice error message in red.

3.8 Generating Links
The login form is fairly complete now, but before closing this chapter I
wanted to discuss the proper way to include links in templates and
redirects. So far you have seen a few instances in which links are
defined. For example, this is the current navigation bar in the base
template:

 <div>

 Microblog:

 Home

 Login

 </div>

The login view function also defines a link that is passed to the
redirect() function:

@app.route('/login', methods=['GET', 'POST'])

def login():

 form = LoginForm()

 if form.validate_on_submit():

 # ...

 return redirect('/index')

 # ...

One problem with writing links directly in templates and source files is
that if one day you decide to reorganize your links, then you are going
to have to search and replace these links in your entire application.

To have better control over these links, Flask provides a function
called url_for(), which generates URLs using its internal mapping of
URLs to view functions. For example, the expression
url_for(’login’) returns /login, and url_for(’index’) return
’/index. The argument to url_for() is the endpoint name, which is
the name of the view function.

You may ask why is it better to use the function names instead of
URLs. The fact is that URLs are much more likely to change than view

function names, which are completely internal. A secondary reason is
that as you will learn later, some URLs have dynamic components in
them, so generating those URLs by hand would require concatenating
multiple elements, which is tedious and error prone. The url_for() is
also able to generate these complex URLs.

So from now on, I’m going to use url_for() every time I need to
generate an application URL. The navigation bar in the base template
then becomes:

Listing 3.10: app/templates/base.html: Use url_for() function for
links

 <div>

 Microblog:

 Home

 Login

 </div>

And here is the updated login() view function:

Listing 3.11: app/routes.py: Use url_for() function for links

from flask import render_template, flash, redirect, url_for

...

@app.route('/login', methods=['GET', 'POST'])

def login():

 form = LoginForm()

 if form.validate_on_submit():

 # ...

 return redirect(url_for('index'))

 # ...

Chapter 4

Database
The topic of this chapter is extremely important. For most
applications, there is going to be a need to maintain persistent data
that can be retrieved efficiently, and this is exactly what databases are
made for.

The GitHub links for this chapter are: Browse, Zip, Diff.

https://github.com/miguelgrinberg/microblog/tree/v0.4
https://github.com/miguelgrinberg/microblog/archive/v0.4.zip
https://github.com/miguelgrinberg/microblog/compare/v0.3...v0.4

4.1 Databases in Flask
As I’m sure you have heard already, Flask does not support databases
natively. This is one of the many areas in which Flask is intentionally
not opinionated, which is great, because you have the freedom to
choose the database that best fits your application instead of being
forced to adapt to one.

There are great choices for databases in Python, many of them with
Flask extensions that make a better integration with the application.
The databases can be separated into two big groups, those that follow
the relational model, and those that do not. The latter group is often
called NoSQL, indicating that they do not implement the popular
relational query language SQL. While there are great database
products in both groups, my opinion is that relational databases are a
better match for applications that have structured data such as lists of
users, blog posts, etc., while NoSQL databases tend to be better for
data that has a less defined structure. This application, like most
others, can be implemented using either type of database, but for the
reasons stated above, I’m going to go with a relational database.

In Chapter 3 I showed you a first Flask extension. In this chapter I’m
going to use two more. The first is Flask-SQLAlchemy, an extension
that provides a Flask-friendly wrapper to the popular SQLAlchemy
package, which is an Object Relational Mapper or ORM. ORMs allow
applications to manage a database using high-level entities such as
classes, objects and methods instead of tables and SQL. The job of the
ORM is to translate the high-level operations into database
commands.

The nice thing about SQLAlchemy is that it is an ORM not for one, but
for many relational databases. SQLAlchemy supports a long list of
database engines, including the popular MySQL, PostgreSQL and

https://en.wikipedia.org/wiki/SQL
http://packages.python.org/Flask-SQLAlchemy
http://www.sqlalchemy.org
http://en.wikipedia.org/wiki/Object-relational_mapping
https://www.mysql.com/
https://www.postgresql.org/

SQLite. This is extremely powerful, because you can do your
development using a simple SQLite database that does not require a
server, and then when the time comes to deploy the application on a
production server you can choose a more robust MySQL or
PostgreSQL server, without having to change your application.

To install Flask-SQLAlchemy in your virtual environment, make sure
you have activated it first, and then run:

(venv) $ pip install flask-sqlalchemy

https://www.sqlite.org/

4.2 Database Migrations
Most database tutorials I’ve seen cover creation and use of a database,
but do not adequately address the problem of making updates to an
existing database as the application needs change or grow. This is
hard because relational databases are centered around structured
data, so when the structure changes the data that is already in the
database needs to be migrated to the modified structure.

The second extension that I’m going to present in this chapter is Flask-
Migrate, which is actually one created by yours truly. This extension is
a Flask wrapper for Alembic, a database migration framework for
SQLAlchemy. Working with database migrations adds a bit of work to
get a database started, but that is a small price to pay for a robust way
to make changes to your database in the future.

The installation process for Flask-Migrate is similar to other
extensions you have seen:

(venv) $ pip install flask-migrate

https://github.com/miguelgrinberg/flask-migrate
https://bitbucket.org/zzzeek/alembic

4.3 Flask-SQLAlchemy
Configuration
During development, I’m going to use a SQLite database. SQLite
databases are the most convenient choice for developing small
applications, sometimes even not so small ones, as each database is
stored in a single file on disk and there is no need to run a database
server like MySQL and PostgreSQL.

We have two new configuration items to add to the config file:

Listing 4.1: config.py: Flask-SQLAlchemy configuration

import os

basedir = os.path.abspath(os.path.dirname(__file__))

class Config(object):

 # ...

 SQLALCHEMY_DATABASE_URI = os.environ.get('DATABASE_URL') or \

 'sqlite:///' + os.path.join(basedir, 'app.db')

 SQLALCHEMY_TRACK_MODIFICATIONS = False

The Flask-SQLAlchemy extension takes the location of the
application’s database from the SQLALCHEMY_DATABASE_URI
configuration variable. As you recall from Chapter 3, it is in general a
good practice to set configuration from environment variables, and
provide a fallback value when the environment does not define the
variable. In this case I’m taking the database URL from the
DATABASE_URL environment variable, and if that isn’t defined, I’m
configuring a database named app.db located in the main directory of
the application, which is stored in the basedir variable.

The SQLALCHEMY_TRACK_MODIFICATIONS configuration option is set to
False to disable a feature of Flask-SQLAlchemy that I do not need,
which is to signal the application every time a change is about to be

made in the database.

The database is going to be represented in the application by the
database instance. The database migration engine will also have an
instance. These are objects that need to be created after the
application, in the app/__init__.py file:

Listing 4.2: app/__init__.py: Flask-SQLAlchemy and Flask-
Migrate initialization

from flask import Flask

from config import Config

from flask_sqlalchemy import SQLAlchemy

from flask_migrate import Migrate

app = Flask(__name__)

app.config.from_object(Config)

db = SQLAlchemy(app)

migrate = Migrate(app, db)

from app import routes, models

I have made three changes to the init script. First, I have added a db
object that represents the database. Then I have added another object
that represents the migration engine. Hopefully you see a pattern in
how to work with Flask extensions. Most extensions are initialized as
these two. Finally, I’m importing a new module called models at the
bottom. This module will define the structure of the database.

4.4 Database Models
The data that will be stored in the database will be represented by a
collection of classes, usually called database models. The ORM layer
within SQLAlchemy will do the translations required to map objects
created from these classes into rows in the proper database tables.

Let’s start by creating a model that represents users. Using the WWW
SQL Designer tool, I have made the following diagram to represent the
data that we want to use in the users table:

The id field is usually in all models, and is used as the primary key.
Each user in the database will be assigned a unique id value, stored in
this field. Primary keys are, in most cases, automatically assigned by
the database, so I just need to provide the id field marked as a primary
key.

The username, email and password_hash fields are defined as strings (or
VARCHAR in database jargon), and their maximum lengths are specified
so that the database can optimize space usage. While the username and
email fields are self-explanatory, the password_hash fields deserves
some attention. I want to make sure the application that I’m building
adopts security best practices, and for that reason I will not be storing
user passwords in the database. The problem with storing passwords
is that if the database ever becomes compromised, the attackers will

http://ondras.zarovi.cz/sql/demo

have access to the passwords, and that could be devastating for users.
Instead of writing the passwords directly, I’m going to write password
hashes, which greatly improve security. This is going to be the topic of
another chapter, so don’t worry about it too much for now.

So now that I know what I want for my users table, I can translate that
into code in the new app/models.py module:

Listing 4.3: app/models.py: User database model

from app import db

class User(db.Model):

 id = db.Column(db.Integer, primary_key=True)

 username = db.Column(db.String(64), index=True, unique=True)

 email = db.Column(db.String(120), index=True, unique=True)

 password_hash = db.Column(db.String(128))

 def __repr__(self):

 return '<User {}>'.format(self.username)

The User class created above inherits from db.Model, a base class for all
models from Flask-SQLAlchemy. This class defines several fields as
class variables. Fields are created as instances of the db.Column class,
which takes the field type as an argument, plus other optional
arguments that, for example, allow me to indicate which fields are
unique and indexed, which is important so that database searches are
efficient.

The __repr__ method tells Python how to print objects of this class,
which is going to be useful for debugging. You can see the __repr__()
method in action in the Python interpreter session below:

>>> from app.models import User

>>> u = User(username='susan', email='susan@example.com')

>>> u

<User susan>

4.5 Creating The Migration
Repository
The model class created in the previous section defines the initial
database structure (or schema) for this application. But as the
application continues to grow, it is likely that I will need to make
changes to that structure such as adding new things, and sometimes to
modify or remove items. Alembic (the migration framework used by
Flask-Migrate) will make these schema changes in a way that does not
require the database to be recreated from scratch every time a change
needs to be made.

To accomplish this seemingly difficult task, Alembic maintains a
migration repository, which is a directory in which it stores its
migration scripts. Each time a change is made to the database
schema, a migration script is added to the repository with the details
of the change. To apply the migrations to a database, these migration
scripts are executed in the sequence they were created.

Flask-Migrate exposes its commands through the flask command.
You have already seen flask run, which is a sub-command that is
native to Flask. The flask db sub-command is added by Flask-Migrate
to manage everything related to database migrations. So let’s create
the migration repository for microblog by running flask db init:

(venv) $ flask db init

 Creating directory /home/miguel/microblog/migrations ... done

 Creating directory /home/miguel/microblog/migrations/versions ... done

 Generating /home/miguel/microblog/migrations/alembic.ini ... done

 Generating /home/miguel/microblog/migrations/env.py ... done

 Generating /home/miguel/microblog/migrations/README ... done

 Generating /home/miguel/microblog/migrations/script.py.mako ... done

 Please edit configuration/connection/logging settings in

 '/home/miguel/microblog/migrations/alembic.ini' before proceeding.

Remember that the flask command relies on the FLASK_APP
environment variable to know where the Flask application lives. For
this application, you want to set FLASK_APP to the value microblog.py,
as discussed in Chapter 1.

After you run this command, you will find a new migrations directory,
with a few files and a versions sub-directory inside. All these files
should be treated as part of your project from now on, and in
particular, should be added to source control along with your
application code.

4.6 The First Database
Migration
With the migration repository in place, it is time to create the first
database migration, which will include the users table that maps to the
User database model. There are two ways to create a database
migration: manually or automatically. To generate a migration
automatically, Alembic compares the database schema as defined by
the database models, against the actual database schema currently
used in the database. It then populates the migration script with the
changes necessary to make the database schema match the application
models. In this case, since there is no previous database, the
automatic migration will add the entire User model to the migration
script. The flask db migrate sub-command generates these automatic
migrations:

(venv) $ flask db migrate -m "users table"

INFO [alembic.runtime.migration] Context impl SQLiteImpl.

INFO [alembic.runtime.migration] Will assume non-transactional DDL.

INFO [alembic.autogenerate.compare] Detected added table 'user'

INFO [alembic.autogenerate.compare] Detected added index 'ix_user_email' on '['email']'

INFO [alembic.autogenerate.compare] Detected added index 'ix_user_username' on '['username']'

 Generating /home/miguel/microblog/migrations/versions/e517276bb1c2_users_table.py ... done

The output of the command gives you an idea of what Alembic
included in the migration. The first two lines are informational and
can usually be ignored. It then says that it found a user table and two
indexes. Then it tells you where it wrote the migration script. The
e517276bb1c2 code is an automatically generated unique code for the
migration (it will be different for you). The comment given with the -m
option is optional, it adds a short descriptive text to the migration.

The generated migration script is now part of your project, and needs
to be incorporated to source control. You are welcome to inspect the

script if you are curious to see how it looks. You will find that it has
two functions called upgrade() and downgrade(). The upgrade()
function applies the migration, and the downgrade() function removes
it. This allows Alembic to migrate the database to any point in the
history, even to older versions, by using the downgrade path.

The flask db migrate command does not make any changes to the
database, it just generates the migration script. To apply the changes
to the database, the flask db upgrade command must be used.

(venv) $ flask db upgrade

INFO [alembic.runtime.migration] Context impl SQLiteImpl.

INFO [alembic.runtime.migration] Will assume non-transactional DDL.

INFO [alembic.runtime.migration] Running upgrade -> e517276bb1c2, users table

Because this application uses SQLite, the upgrade command will detect
that a database does not exist and will create it (you will notice a file
named app.db is added after this command finishes, that is the SQLite
database). When working with database servers such as MySQL and
PostgreSQL, you have to create the database in the database server
before running upgrade.

Note that Flask-SQLAlchemy uses a “snake case” naming convention
for database tables by default. For the User model above, the
corresponding table in the database will be named user. For a
AddressAndPhone model class, the table would be named
address_and_phone. If you prefer to choose your own table names, you
can add an attribute named __tablename__ to the model class, set to
the desired name as a string.

4.7 Database Upgrade and
Downgrade Workflow
The application is in its infancy at this point, but it does not hurt to
discuss what is going to be the database migration strategy going
forward. Imagine that you have your application on your development
machine, and also have a copy deployed to a production server that is
online and in use.

Let’s say that for the next release of your app you have to introduce a
change to your models, for example a new table needs to be added.
Without migrations you would need to figure out how to change the
schema of your database, both in your development machine and then
again in your server, and this could be a lot of work.

But with database migration support, after you modify the models in
your application you generate a new migration script (flask db
migrate), you probably review it to make sure the automatic
generation did the right thing, and then apply the changes to your
development database (flask db upgrade). You will add the migration
script to source control and commit it.

When you are ready to release the new version of the application to
your production server, all you need to do is grab the updated version
of your application, which will include the new migration script, and
run flask db upgrade. Alembic will detect that the production
database is not updated to the latest revision of the schema, and run
all the new migration scripts that were created after the previous
release.

As I mentioned earlier, you also have a flask db downgrade command,
which undoes the last migration. While you will be unlikely to need
this option on a production system, you may find it very useful during

development. You may have generated a migration script and applied
it, only to find that the changes that you made are not exactly what you
need. In this case, you can downgrade the database, delete the
migration script, and then generate a new one to replace it.

4.8 Database Relationships
Relational databases are good at storing relations between data items.
Consider the case of a user writing a blog post. The user will have a
record in the users table, and the post will have a record in the posts
table. The most efficient way to record who wrote a given post is to
link the two related records.

Once a link between a user and a post is established, the database can
answer queries about this link. The most trivial one is when you have
a blog post and need to know what user wrote it. A more complex
query is the reverse of this one. If you have a user, you may want to
know all the posts that this user wrote. Flask-SQLAlchemy will help
with both types of queries.

Let’s expand the database to store blog posts to see relationships in
action. Here is the schema for a new posts table:

The posts table will have the required id, the body of the post and a
timestamp. But in addition to these expected fields, I’m adding a
user_id field, which links the post to its author. You’ve seen that all
users have a id primary key, which is unique. The way to link a blog
post to the user that authored it is to add a reference to the user’s id,
and that is exactly what the user_id field is. This user_id field is called
a foreign key. The database diagram above shows foreign keys as a

link between the field and the id field of the table it refers to. This
kind of relationship is called a one-to-many, because “one” user writes
“many” posts.

The modified app/models.py is shown below:

Listing 4.4: app/models.py: Posts database table and relationship

from datetime import datetime

from app import db

class User(db.Model):

 id = db.Column(db.Integer, primary_key=True)

 username = db.Column(db.String(64), index=True, unique=True)

 email = db.Column(db.String(120), index=True, unique=True)

 password_hash = db.Column(db.String(128))

 posts = db.relationship('Post', backref='author', lazy='dynamic')

 def __repr__(self):

 return '<User {}>'.format(self.username)

class Post(db.Model):

 id = db.Column(db.Integer, primary_key=True)

 body = db.Column(db.String(140))

 timestamp = db.Column(db.DateTime, index=True, default=datetime.utcnow)

 user_id = db.Column(db.Integer, db.ForeignKey('user.id'))

 def __repr__(self):

 return '<Post {}>'.format(self.body)

The new Post class will represent blog posts written by users. The
timestamp field is going to be indexed, which is useful if you want to
retrieve posts in chronological order. I have also added a default
argument, and passed the datetime.utcnow function. When you pass a
function as a default, SQLAlchemy will set the field to the value of
calling that function (note that I did not include the () after utcnow, so
I’m passing the function itself, and not the result of calling it). In
general, you will want to work with UTC dates and times in a server
application. This ensures that you are using uniform timestamps
regardless of where the users are located. These timestamps will be
converted to the user’s local time when they are displayed.

The user_id field was initialized as a foreign key to user.id, which
means that it references an id value from the users table. In this
reference the user part is the name of the database table for the

model. It is an unfortunate inconsistency that in some instances such
as in a db.relationship() call, the model is referenced by the model
class, which typically starts with an uppercase character, while in other
cases such as this db.ForeignKey() declaration, a model is given by its
database table name, for which SQLAlchemy automatically uses
lowercase characters and, for multi-word model names, snake case.

The User class has a new posts field, that is initialized with
db.relationship. This is not an actual database field, but a high-level
view of the relationship between users and posts, and for that reason it
isn’t in the database diagram. For a one-to-many relationship, a
db.relationship field is normally defined on the “one” side, and is
used as a convenient way to get access to the “many”. So for example,
if I have a user stored in u, the expression u.posts will run a database
query that returns all the posts written by that user. The first
argument to db.relationship is the model class that represents the
“many” side of the relationship. This argument can be provided as a
string with the class name if the model is defined later in the module.
The backref argument defines the name of a field that will be added to
the objects of the “many” class that points back at the “one” object.
This will add a post.author expression that will return the user given a
post. The lazy argument defines how the database query for the
relationship will be issued, which is something that I will discuss later.
Don’t worry if these details don’t make much sense just yet, I’ll show
you examples of this at the end of this article.

Since I have updates to the application models, a new database
migration needs to be generated:

(venv) $ flask db migrate -m "posts table"

INFO [alembic.runtime.migration] Context impl SQLiteImpl.

INFO [alembic.runtime.migration] Will assume non-transactional DDL.

INFO [alembic.autogenerate.compare] Detected added table 'post'

INFO [alembic.autogenerate.compare] Detected added index 'ix_post_timestamp' on '['timestamp']'

 Generating /home/miguel/microblog/migrations/versions/780739b227a7_posts_table.py ... done

And the migration needs to be applied to the database:

(venv) $ flask db upgrade

INFO [alembic.runtime.migration] Context impl SQLiteImpl.

INFO [alembic.runtime.migration] Will assume non-transactional DDL.

INFO [alembic.runtime.migration] Running upgrade e517276bb1c2 -> 780739b227a7, posts table

If you are storing your project in source control, also remember to add
the new migration script to it.

4.9 Play Time
I have made you suffer through a long process to define the database,
but I haven’t shown you how everything works yet. Since the
application does not have any database logic yet, let’s play with the
database in the Python interpreter to familiarize with it. So go ahead
and fire up Python by running python. Make sure your virtual
environment is activated before you start the interpreter.

Once in the Python prompt, let’s import the database instance and the
models:

>>> from app import db

>>> from app.models import User, Post

Start by creating a new user:

>>> u = User(username='john', email='john@example.com')

>>> db.session.add(u)

>>> db.session.commit()

Changes to a database are done in the context of a database session,
which can be accessed as db.session. Multiple changes can be
accumulated in a session and once all the changes have been
registered you can issue a single db.session.commit(), which writes all
the changes atomically. If at any time while working on a session there
is an error, a call to db.session.rollback() will abort the session and
remove any changes stored in it. The important thing to remember is
that changes are only written to the database when a commit is issued
with db.session.commit(). Sessions guarantee that the database will
never be left in an inconsistent state.

Let’s add another user:

>>> u = User(username='susan', email='susan@example.com')

>>> db.session.add(u)

>>> db.session.commit()

The database can answer a query that returns all the users:

>>> users = User.query.all()

>>> users

[<User john>, <User susan>]

>>> for u in users:

... print(u.id, u.username)

...

1 john

2 susan

All models have a query attribute that is the entry point to run
database queries. The most basic query is that one that returns all
elements of that class, which is appropriately named all(). Note that
the id fields were automatically set to 1 and 2 when those users were
added.

Here is another way to do queries. If you know the id of a user, you
can retrieve that user as follows:

>>> u = User.query.get(1)

>>> u

<User john>

Now let’s add a blog post:

>>> u = User.query.get(1)

>>> p = Post(body='my first post!', author=u)

>>> db.session.add(p)

>>> db.session.commit()

I did not need to set a value for the timestamp field because that field
has a default, which you can see in the model definition. And what
about the user_id field? Recall that the db.relationship that I created
in the User class adds a posts attribute to users, and also a author
attribute to posts. I assign an author to a post using the author virtual
field instead of having to deal with user IDs. SQLAlchemy is great in
that respect, as it provides a high-level abstraction over relationships
and foreign keys.

To complete this session, let’s look at a few more database queries:

>>> # get all posts written by a user

>>> u = User.query.get(1)

>>> u

<User john>

>>> posts = u.posts.all()

>>> posts

[<Post my first post!>]

>>> # same, but with a user that has no posts

>>> u = User.query.get(2)

>>> u

<User susan>

>>> u.posts.all()

[]

>>> # print post author and body for all posts

>>> posts = Post.query.all()

>>> for p in posts:

... print(p.id, p.author.username, p.body)

...

1 john my first post!

get all users in reverse alphabetical order

>>> User.query.order_by(User.username.desc()).all()

[<User susan>, <User john>]

The Flask-SQLAlchemy documentation is the best place to learn about
the many options that are available to query the database.

To complete this section, let’s erase the test users and posts created
above, so that the database is clean and ready for the next chapter:

>>> users = User.query.all()

>>> for u in users:

... db.session.delete(u)

...

>>> posts = Post.query.all()

>>> for p in posts:

... db.session.delete(p)

...

>>> db.session.commit()

http://packages.python.org/Flask-SQLAlchemy/index.html

4.10 Shell Context
Remember what you did at the start of the previous section, right after
starting a Python interpreter? The first thing you did was to run some
imports:

>>> from app import db

>>> from app.models import User, Post

While you work on your application, you will need to test things out in
a Python shell very often, so having to repeat the above imports every
time is going to get tedious. The flask shell command is another very
useful tool in the flask umbrella of commands. The shell command is
the second “core” command implemented by Flask, after run. The
purpose of this command is to start a Python interpreter in the context
of the application. What does that mean? See the following example:

(venv) $ python

>>> app

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name 'app' is not defined

>>>

(venv) $ flask shell

>>> app

<Flask 'app'>

With a regular interpreter session, the app symbol is not known unless
it is explicitly imported, but when using flask shell, the command
pre-imports the application instance. The nice thing about flask
shell is not that it pre-imports app, but that you can configure a “shell
context”, which is a list of other symbols to pre-import.

The following function in microblog.py creates a shell context that
adds the database instance and models to the shell session:

from app import app, db

from app.models import User, Post

@app.shell_context_processor

def make_shell_context():

 return {'db': db, 'User': User, 'Post': Post}

The app.shell_context_processor decorator registers the function as a
shell context function. When the flask shell command runs, it will
invoke this function and register the items returned by it in the shell
session. The reason the function returns a dictionary and not a list is
that for each item you have to also provide a name under which it will
be referenced in the shell, which is given by the dictionary keys.

After you add the shell context processor function you can work with
database entities without having to import them:

(venv) $ flask shell

>>> db

<SQLAlchemy engine=sqlite:////Users/migu7781/Documents/dev/flask/microblog2/app.db>

>>> User

<class 'app.models.User'>

>>> Post

<class 'app.models.Post'>

If you try the above and get NameError exceptions when you try to
access db, User and Post, then the make_shell_context() function is not
being registered with Flask. The most likely cause of this is that you
have not set FLASK_APP=microblog.py in the environment. In that case,
go back to Chapter 1 and review how to set the FLASK_APP environment
variable. If you often forget to set this variable when you open new
terminal windows, you may consider adding a .flaskenv file to your
project, as described at the end of that chapter.

Chapter 5

User Logins
In Chapter 3 you learned how to create the user login form, and in
Chapter 4 you learned how to work with a database. This chapter will
teach you how to combine the topics from those two chapters to create
a simple user login system.

The GitHub links for this chapter are: Browse, Zip, Diff.

https://github.com/miguelgrinberg/microblog/tree/v0.5
https://github.com/miguelgrinberg/microblog/archive/v0.5.zip
https://github.com/miguelgrinberg/microblog/compare/v0.4...v0.5

5.1 Password Hashing
In Chapter 4 the user model was given a password_hash field, that so
far is unused. The purpose of this field is to hold a hash of the user
password, which will be used to verify the password entered by the
user during the log in process. Password hashing is a complicated
topic that should be left to security experts, but there are several easy
to use libraries that implement all that logic in a way that is simple to
be invoked from an application.

One of the packages that implement password hashing is Werkzeug,
which you may have seen referenced in the output of pip when you
install Flask, since it is one of its core dependencies. Since it is a
dependency, Werkzeug is already installed in your virtual
environment. The following Python shell session demonstrates how to
hash a password:

>>> from werkzeug.security import generate_password_hash

>>> hash = generate_password_hash('foobar')

>>> hash

'pbkdf2:sha256:50000$vT9fkZM8$04dfa35c6476acf7e788a1b5b3c35e217c78dc04539d295f011f01f18cd2175f'

In this example, the password foobar is transformed into a long
encoded string through a series of cryptographic operations that have
no known reverse operation, which means that a person that obtains
the hashed password will be unable to use it to obtain the original
password. As an additional measure, if you hash the same password
multiple times, you will get different results, so this makes it
impossible to identify if two users have the same password by looking
at their hashes.

The verification process is done with a second function from
Werkzeug, as follows:

>>> from werkzeug.security import check_password_hash

http://werkzeug.pocoo.org/

>>> check_password_hash(hash, 'foobar')

True

>>> check_password_hash(hash, 'barfoo')

False

The verification function takes a password hash that was previously
generated, and a password entered by the user at the time of log in.
The function returns True if the password provided by the user
matches the hash, or False otherwise.

The whole password hashing logic can be implemented as two new
methods in the user model:

Listing 5.1: app/models.py: Password hashing and verification

from werkzeug.security import generate_password_hash, check_password_hash

...

class User(db.Model):

 # ...

 def set_password(self, password):

 self.password_hash = generate_password_hash(password)

 def check_password(self, password):

 return check_password_hash(self.password_hash, password)

With these two methods in place, a user object is now able to do secure
password verification, without the need to ever store original
passwords. Here is an example usage of these new methods:

>>> u = User(username='susan', email='susan@example.com')

>>> u.set_password('mypassword')

>>> u.check_password('anotherpassword')

False

>>> u.check_password('mypassword')

True

5.2 Introduction to Flask-
Login
In this chapter I’m going to introduce you to a very popular Flask
extension called Flask-Login. This extension manages the user logged-
in state, so that for example users can log in to the application and
then navigate to different pages while the application “remembers”
that the user is logged in. It also provides the “remember me”
functionality that allows users to remain logged in even after closing
the browser window. To be ready for this chapter, you can start by
installing Flask-Login in your virtual environment:

(venv) $ pip install flask-login

As with other extensions, Flask-Login needs to be created and
initialized right after the application instance in app/__init__.py.
This is how this extension is initialized:

Listing 5.2: app/__init__.py: Flask-Login initialization

...

from flask_login import LoginManager

app = Flask(__name__)

...

login = LoginManager(app)

...

https://flask-login.readthedocs.io/

5.3 Preparing The User
Model for Flask-Login
The Flask-Login extension works with the application’s user model,
and expects certain properties and methods to be implemented in it.
This approach is nice, because as long as these required items are
added to the model, Flask-Login does not have any other
requirements, so for example, it can work with user models that are
based on any database system.

The four required items are listed below:

is_authenticated: a property that is True if the user has valid
credentials or False otherwise.
is_active: a property that is True if the user’s account is active or
False otherwise.
is_anonymous: a property that is False for regular users, and True
for a special, anonymous user.
get_id(): a method that returns a unique identifier for the user as
a string (unicode, if using Python 2).

I can implement these four easily, but since the implementations are
fairly generic, Flask-Login provides a mixin class called UserMixin that
includes generic implementations that are appropriate for most user
model classes. Here is how the mixin class is added to the model:

Listing 5.3: app/models.py: Flask-Login user mixin class

...

from flask_login import UserMixin

class User(UserMixin, db.Model):

 # ...

5.4 User Loader Function
Flask-Login keeps track of the logged in user by storing its unique
identifier in Flask’s user session, a storage space assigned to each user
who connects to the application. Each time the logged-in user
navigates to a new page, Flask-Login retrieves the ID of the user from
the session, and then loads that user into memory.

Because Flask-Login knows nothing about databases, it needs the
application’s help in loading a user. For that reason, the extension
expects that the application will configure a user loader function, that
can be called to load a user given the ID. This function can be added in
the app/models.py module:

Listing 5.4: app/models.py: Flask-Login user loader function

from app import login

...

@login.user_loader

def load_user(id):

 return User.query.get(int(id))

The user loader is registered with Flask-Login with the
@login.user_loader decorator. The id that Flask-Login passes to the
function as an argument is going to be a string, so databases that use
numeric IDs need to convert the string to integer as you see above.

5.5 Logging Users In
Let’s revisit the login view function, which as you recall, implemented
a fake login that just issued a flash() message. Now that the
application has access to a user database and knows how to generate
and verify password hashes, this view function can be completed.

Listing 5.5: app/routes.py: Login view function logic

...

from flask_login import current_user, login_user

from app.models import User

...

@app.route('/login', methods=['GET', 'POST'])

def login():

 if current_user.is_authenticated:

 return redirect(url_for('index'))

 form = LoginForm()

 if form.validate_on_submit():

 user = User.query.filter_by(username=form.username.data).first()

 if user is None or not user.check_password(form.password.data):

 flash('Invalid username or password')

 return redirect(url_for('login'))

 login_user(user, remember=form.remember_me.data)

 return redirect(url_for('index'))

 return render_template('login.html', title='Sign In', form=form)

The top two lines in the login() function deal with a weird situation.
Imagine you have a user that is logged in, and the user navigates to the
/login URL of your application. Clearly that is a mistake, so I want to
not allow that. The current_user variable comes from Flask-Login and
can be used at any time during the handling to obtain the user object
that represents the client of the request. The value of this variable can
be a user object from the database (which Flask-Login reads through
the user loader callback I provided above), or a special anonymous
user object if the user did not log in yet. Remember those properties
that Flask-Login required in the user object? One of those was

is_authenticated, which comes in handy to check if the user is logged
in or not. When the user is already logged in, I just redirect to the
index page.

In place of the flash() call that I used earlier, now I can log the user in
for real. The first step is to load the user from the database. The
username came with the form submission, so I can query the database
with that to find the user. For this purpose I’m using the filter_by()
method of the SQLAlchemy query object. The result of filter_by() is
a query that only includes the objects that have a matching username.
Since I know there is only going to be one or zero results, I complete
the query by calling first(), which will return the user object if it
exists, or None if it does not. In Chapter 4 you have seen that when you
call the all() method in a query, the query executes and you get a list
of all the results that match that query. The first() method is another
commonly used way to execute a query, when you only need to have
one result.

If I got a match for the username that was provided, I can next check if
the password that also came with the form is valid. This is done by
invoking the check_password() method I defined above. This will take
the password hash stored with the user and determine if the password
entered in the form matches the hash or not. So now I have two
possible error conditions: the username can be invalid, or the
password can be incorrect for the user. In either of those cases, I flash
an message, and redirect back to the login prompt so that the user can
try again.

If the username and password are both correct, then I call the
login_user() function, which comes from Flask-Login. This function
will register the user as logged in, so that means that any future pages
the user navigates to will have the current_user variable set to that
user.

To complete the login process, I just redirect the newly logged-in user
to the index page.

5.6 Logging Users Out
I know I will also need to offer users the option to log out of the
application. This can be done with Flask-Login’s logout_user()
function. Here is the logout view function:

Listing 5.6: app/routes.py: Logout view function

...

from flask_login import logout_user

...

@app.route('/logout')

def logout():

 logout_user()

 return redirect(url_for('index'))

To expose this link to users, I can make the Login link in the
navigation bar automatically switch to a Logout link after the user logs
in. This can be done with a conditional in the base.html template:

Listing 5.7: app/templates/base.html: Conditional login and logout
links

 <div>

 Microblog:

 Home

 {% if current_user.is_anonymous %}

 Login

 {% else %}

 Logout

 {% endif %}

 </div>

The is_anonymous property is one of the attributes that Flask-Login
adds to user objects through the UserMixin class. The
current_user.is_anonymous expression is going to be True only when
the user is not logged in.

5.7 Requiring Users To
Login
Flask-Login provides a very useful feature that forces users to log in
before they can view certain pages of the application. If a user who is
not logged in tries to view a protected page, Flask-Login will
automatically redirect the user to the login form, and only redirect
back to the page the user wanted to view after the login process is
complete.

For this feature to be implemented, Flask-Login needs to know what is
the view function that handles logins. This can be added in
app/__init__.py:

...

login = LoginManager(app)

login.login_view = 'login'

The ’login’ value above is the function (or endpoint) name for the
login view. In other words, the name you would use in a url_for() call
to get the URL.

The way Flask-Login protects a view function against anonymous
users is with a decorator called @login_required. When you add this
decorator to a view function below the @app.route decorators from
Flask, the function becomes protected and will not allow access to
users that are not authenticated. Here is how the decorator can be
applied to the index view function of the application:

Listing 5.8: app/routes.py: @login_required decorator

from flask_login import login_required

@app.route('/')

@app.route('/index')

@login_required

def index():

 # ...

What remains is to implement the redirect back from the successful
login to the page the user wanted to access. When a user that is not
logged in accesses a view function protected with the @login_required
decorator, the decorator is going to redirect to the login page, but it is
going to include some extra information in this redirect so that the
application can then return to the first page. If the user navigates to
/index, for example, the @login_required decorator will intercept the
request and respond with a redirect to /login, but it will add a query
string argument to this URL, making the complete redirect URL
/login?next=/index. The next query string argument is set to the
original URL, so the application can use that to redirect back after
login.

Here is a snippet of code that shows how to read and process the next
query string argument:

Listing 5.9: app/routes.py: Redirect to "next" page

from flask import request

from werkzeug.urls import url_parse

@app.route('/login', methods=['GET', 'POST'])

def login():

 # ...

 if form.validate_on_submit():

 user = User.query.filter_by(username=form.username.data).first()

 if user is None or not user.check_password(form.password.data):

 flash('Invalid username or password')

 return redirect(url_for('login'))

 login_user(user, remember=form.remember_me.data)

 next_page = request.args.get('next')

 if not next_page or url_parse(next_page).netloc != '':

 next_page = url_for('index')

 return redirect(next_page)

 # ...

Right after the user is logged in by calling Flask-Login’s login_user()
function, the value of the next query string argument is obtained.
Flask provides a request variable that contains all the information that
the client sent with the request. In particular, the request.args

attribute exposes the contents of the query string in a friendly
dictionary format. There are actually three possible cases that need to
be considered to determine where to redirect after a successful login:

If the login URL does not have a next argument, then the user is
redirected to the index page.
If the login URL includes a next argument that is set to a relative
path (or in other words, a URL without the domain portion), then
the user is redirected to that URL.
If the login URL includes a next argument that is set to a full URL
that includes a domain name, then the user is redirected to the
index page.

The first and second cases are self-explanatory. The third case is in
place to make the application more secure. An attacker could insert a
URL to a malicious site in the next argument, so the application only
redirects when the URL is relative, which ensures that the redirect
stays within the same site as the application. To determine if the URL
is relative or absolute, I parse it with Werkzeug’s url_parse() function
and then check if the netloc component is set or not.

5.8 Showing The Logged In
User in Templates
Do you recall that way back in Chapter 2 I created a fake user to help
me design the home page of the application before the user subsystem
was in place? Well, the application has real users now, so I can now
remove the fake user and start working with real users. Instead of the
fake user I can use Flask-Login’s current_user in the template:

Listing 5.10: app/templates/index.html: Pass current user to
template

{% extends "base.html" %}

{% block content %}

 <h1>Hi, {{ current_user.username }}!</h1>

 {% for post in posts %}

 <div><p>{{ post.author.username }} says: {{ post.body }}</p></div>

 {% endfor %}

{% endblock %}

And I can remove the user template argument in the view function:

Listing 5.11: app/routes.py: Do not pass user to template anymore

@app.route('/')

@app.route('/index')

@login_required

def index():

 # ...

 return render_template("index.html", title='Home Page', posts=posts)

This is a good time to test how the login and logout functionality
works. Since there is still no user registration, the only way to add a
user to the database is to do it via the Python shell, so run flask shell
and enter the following commands to register a user:

>>> u = User(username='susan', email='susan@example.com')

>>> u.set_password('cat')

>>> db.session.add(u)

>>> db.session.commit()

If you start the application and go to the application’s / or /index
URLs, you will be immediately redirected to the login page, and after
you log in using the credentials of the user that you added to your
database, you will be returned to the original page, in which you will
see a personalized greeting.

5.9 User Registration
The last piece of functionality that I’m going to build in this chapter is
a registration form, so that users can register themselves through a
web form. Let’s begin by creating the web form class in app/forms.py:

Listing 5.12: app/forms.py: User registration form

from flask_wtf import FlaskForm

from wtforms import StringField, PasswordField, BooleanField, SubmitField

from wtforms.validators import ValidationError, DataRequired, Email, EqualTo

from app.models import User

...

class RegistrationForm(FlaskForm):

 username = StringField('Username', validators=[DataRequired()])

 email = StringField('Email', validators=[DataRequired(), Email()])

 password = PasswordField('Password', validators=[DataRequired()])

 password2 = PasswordField(

 'Repeat Password', validators=[DataRequired(), EqualTo('password')])

 submit = SubmitField('Register')

 def validate_username(self, username):

 user = User.query.filter_by(username=username.data).first()

 if user is not None:

 raise ValidationError('Please use a different username.')

 def validate_email(self, email):

 user = User.query.filter_by(email=email.data).first()

 if user is not None:

 raise ValidationError('Please use a different email address.')

There are a couple of interesting things in this new form related to
validation. First, for the email field I’ve added a second validator after
DataRequired, called Email. This is another stock validator that comes
with WTForms that will ensure that what the user types in this field
matches the structure of an email address.

The Email() validator from WTForms requires an external dependency
to be installed:

(venv) $ pip install email-validator

Since this is a registration form, it is customary to ask the user to type
the password two times to reduce the risk of a typo. For that reason I
have password and password2 fields. The second password field uses
yet another stock validator called EqualTo, which will make sure that
its value is identical to the one for the first password field.

When you add any methods that match the pattern
validate_<field_name>, WTForms takes those as custom validators
and invokes them in addition to the stock validators. I have added two
of those methods to this class for the username and email fields. In this
case I want to make sure that the username and email address entered
by the user are not already in the database, so these two methods issue
database queries expecting there will be no results. In the event a
result exists, a validation error is triggered by raising an exception of
type ValidationError. The message included as the argument in the
exception will be the message that will be displayed next to the field
for the user to see.

To display this form on a web page, I need to have an HTML template,
which I’m going to store in file app/templates/register.html. This
template is constructed similarly to the one for the login form:

Listing 5.13: app/templates/register.html: Registration template

{% extends "base.html" %}

{% block content %}

 <h1>Register</h1>

 <form action="" method="post">

 {{ form.hidden_tag() }}

 <p>

 {{ form.username.label }}

 {{ form.username(size=32) }}

 {% for error in form.username.errors %}

 [{{ error }}]

 {% endfor %}

 </p>

 <p>

 {{ form.email.label }}

 {{ form.email(size=64) }}

 {% for error in form.email.errors %}

 [{{ error }}]

 {% endfor %}

 </p>

 <p>

 {{ form.password.label }}

 {{ form.password(size=32) }}

 {% for error in form.password.errors %}

 [{{ error }}]

 {% endfor %}

 </p>

 <p>

 {{ form.password2.label }}

 {{ form.password2(size=32) }}

 {% for error in form.password2.errors %}

 [{{ error }}]

 {% endfor %}

 </p>

 <p>{{ form.submit() }}</p>

 </form>

{% endblock %}

The login form template needs a link that sends new users to the
registration form, right below the form:

Listing 5.14: app/templates/login.html: Link to registration page

 <p>New User? Click to Register!</p>

And finally, I need to write the view function that is going to handle
user registrations in app/routes.py:

Listing 5.15: app/routes.py: User registration view function

from app import db

from app.forms import RegistrationForm

...

@app.route('/register', methods=['GET', 'POST'])

def register():

 if current_user.is_authenticated:

 return redirect(url_for('index'))

 form = RegistrationForm()

 if form.validate_on_submit():

 user = User(username=form.username.data, email=form.email.data)

 user.set_password(form.password.data)

 db.session.add(user)

 db.session.commit()

 flash('Congratulations, you are now a registered user!')

 return redirect(url_for('login'))

 return render_template('register.html', title='Register', form=form)

And this view function should also be mostly self-explanatory. I first
make sure the user that invokes this route is not logged in. The form is

handled in the same way as the one for logging in. The logic that is
done inside the if validate_on_submit() conditional creates a new
user with the username, email and password provided, writes it to the
database, and then redirects to the login prompt so that the user can
log in.

With these changes, users should be able to create accounts on this
application, and log in and out. Make sure you try all the validation
features I’ve added in the registration form to better understand how
they work. I am going to revisit the user authentication subsystem in a
future chapter to add additional functionality such as to allow the user
to reset the password if forgotten. But for now, this is enough to

continue building other areas of the application.

Chapter 6

Profile Page and Avatars
This chapter is going to be dedicated to adding user profile pages to
the application. A user profile page is a page in which information
about a user is presented, often with information entered by the users
themselves. I will show you how to generate profile pages for all users
dynamically, and then I’ll add a small profile editor that users can use
to enter their information.

The GitHub links for this chapter are: Browse, Zip, Diff.

https://github.com/miguelgrinberg/microblog/tree/v0.6
https://github.com/miguelgrinberg/microblog/archive/v0.6.zip
https://github.com/miguelgrinberg/microblog/compare/v0.5...v0.6

6.1 User Profile Page
To create a user profile page, let’s add a /user/<username> route to
the application.

Listing 6.1: app/routes.py: User profile view function

@app.route('/user/<username>')

@login_required

def user(username):

 user = User.query.filter_by(username=username).first_or_404()

 posts = [

 {'author': user, 'body': 'Test post #1'},

 {'author': user, 'body': 'Test post #2'}

]

 return render_template('user.html', user=user, posts=posts)

The @app.route decorator that I used to declare this view function
looks a little bit different than the previous ones. In this case I have a
dynamic component in it, which is indicated as the <username> URL
component that is surrounded by < and >. When a route has a
dynamic component, Flask will accept any text in that portion of the
URL, and will invoke the view function with the actual text as an
argument. For example, if the client browser requests URL
/user/susan, the view function is going to be called with the argument
username set to ’susan’. This view function is only going to be
accessible to logged in users, so I have added the @login_required
decorator from Flask-Login.

The implementation of this view function is fairly simple. I first try to
load the user from the database using a query by the username. You
have seen before that a database query can be executed by calling
all() if you want to get all results, or first() if you want to get just the
first result or None if there are zero results. In this view function I’m
using a variant of first() called first_or_404(), which works exactly
like first() when there are results, but in the case that there are no

results automatically sends a 404 error back to the client. Executing
the query in this way I save myself from checking if the query returned
a user, because when the username does not exist in the database the
function will not return and instead a 404 exception will be raised.

If the database query does not trigger a 404 error, then that means
that a user with the given username was found. Next I initialize a fake
list of posts for this user, finally render a new user.html template to
which I pass the user object and the list of posts.

The user.html template is shown below:

Listing 6.2: app/templates/user.html: User profile template

{% extends "base.html" %}

{% block content %}

 <h1>User: {{ user.username }}</h1>

 <hr>

 {% for post in posts %}

 <p>

 {{ post.author.username }} says: {{ post.body }}

 </p>

 {% endfor %}

{% endblock %}

The profile page is now complete, but a link to it does not exist
anywhere in the web site. To make it a bit more easy for users to check
their own profile, I’m going to add a link to it in the navigation bar at
the top:

Listing 6.3: app/templates/base.html: User profile template

 <div>

 Microblog:

 Home

 {% if current_user.is_anonymous %}

 Login

 {% else %}

 Profile

 Logout

 {% endif %}

 </div>

The only interesting change here is the url_for() call that is used to

https://en.wikipedia.org/wiki/HTTP_404

generate the link to the profile page. Since the user profile view
function takes a dynamic argument, the url_for() function receives a
value for it as a keyword argument. Since this is a link that points to
the logged in’s user profile, I can use Flask-Login’s current_user to
generate the correct URL.

Give the application a try now. Clicking on the Profile link at the top
should take you to your own user page. At this point there are no links
that will take to the profile page of other users, but if you want to
access those pages you can type the URL by hand in the browser’s
address bar. For example, if you have a user named “john” registered
on your application, you can view the corresponding user profile by
typing http://localhost:5000/user/john in the address bar.

6.2 Avatars
I’m sure you agree that the profile pages that I just built are pretty
boring. To make them a bit more interesting, I’m going to add user
avatars, but instead of having to deal with a possibly large collection of
uploaded images in the server, I’m going to use the Gravatar service to
provide images for all users.

The Gravatar service is very simple to use. To request an image for a
given user, a URL with the format
https://www.gravatar.com/avatar/<hash>, where <hash> is the
MD5 hash of the user’s email address. Below you can see how to
obtain the Gravatar URL for a user with email john@example.com:

>>> from hashlib import md5

>>> 'https://www.gravatar.com/avatar/' + md5(b'john@example.com').hexdigest()

'https://www.gravatar.com/avatar/d4c74594d841139328695756648b6bd6'

If you want to see an actual example, my own Gravatar URL is:

https://www.gravatar.com/avatar/729e26a2a2c7ff24a71958d4aa4e5f35

Here is what Gravatar returns for this URL:

By default the image size returned is 80x80 pixels, but a different size
can be requested by adding a s argument to the URL’s query string.
For example, to obtain my own avatar as a 128x128 pixel image, the
URL is
https://www.gravatar.com/avatar/729e26a2a2c7ff24a71958d4aa4e5f35?

http://gravatar.com

s=128.

Another interesting argument that can be passed to Gravatar as a
query string argument is d, which determines what image Gravatar
provides for users that do not have an avatar registered with the
service. My favorite is called “identicon”, which returns a nice
geometric design that is different for every email. For example:

Note that some web browser extensions such as Ghostery block
Gravatar images, as they consider that Automattic (the owners of the
Gravatar service) can determine what sites you visit based on the
requests they get for your avatar. If you don’t see avatars in your
browser, consider that the problem may be due to an extension that
you have installed in your browser.

Since avatars are associated with users, it makes sense to add the logic
that generates the avatar URLs to the user model.

Listing 6.4: app/models.py: User avatar URLs

from hashlib import md5

...

class User(UserMixin, db.Model):

 # ...

 def avatar(self, size):

 digest = md5(self.email.lower().encode('utf-8')).hexdigest()

 return 'https://www.gravatar.com/avatar/{}?d=identicon&s={}'.format(

 digest, size)

The new avatar() method of the User class returns the URL of the
user’s avatar image, scaled to the requested size in pixels. For users
that don’t have an avatar registered, an “identicon” image will be
generated. To generate the MD5 hash, I first convert the email to
lower case, as this is required by the Gravatar service. Then, because
the MD5 support in Python works on bytes and not on strings, I

encode the string as bytes before passing it on to the hash function.

If you are interested in learning about other options offered by the
Gravatar service, visit their documentation website.

The next step is to insert the avatar images in the user profile
template:

Listing 6.5: app/templates/user.html: User avatar in template

{% extends "base.html" %}

{% block content %}

 <table>

 <tr valign="top">

 <td></td>

 <td><h1>User: {{ user.username }}</h1></td>

 </tr>

 </table>

 <hr>

 {% for post in posts %}

 <p>

 {{ post.author.username }} says: {{ post.body }}

 </p>

 {% endfor %}

{% endblock %}

The nice thing about making the User class responsible for returning
avatar URLs is that if some day I decide Gravatar avatars are not what
I want, I can just rewrite the avatar() method to return different
URLs, and all the templates will start showing the new avatars
automatically.

I have a nice big avatar at the top of the user profile page, but really
there is no reason to stop there. I have some posts from the user at the
bottom that could each have a little avatar as well. For the user profile
page of course all posts will have the same avatar, but then I can
implement the same functionality on the main page, and then each
post will be decorated with the author’s avatar, and that will look really
nice.

To show avatars for the individual posts I just need to make one more
small change in the template:

https://gravatar.com/site/implement/images

Listing 6.6: app/templates/user.html: User avatars in posts

{% extends "base.html" %}

{% block content %}

 <table>

 <tr valign="top">

 <td></td>

 <td><h1>User: {{ user.username }}</h1></td>

 </tr>

 </table>

 <hr>

 {% for post in posts %}

 <table>

 <tr valign="top">

 <td></td>

 <td>{{ post.author.username }} says:
{{ post.body }}</td>

 </tr>

 </table>

 {% endfor %}

{% endblock %}

6.3 Using Jinja2 Sub-
Templates
I designed the user profile page so that it displays the posts written by
the user, along with their avatars. Now I want the index page to also
display posts with a similar layout. I could just copy/paste the portion
of the template that deals with the rendering of a post, but that is
really not ideal because later if I decide to make changes to this layout
I’m going to have to remember to update both templates.

Instead, I’m going to make a sub-template that just renders one post,
and then I’m going to reference it from both the user.html and
index.html templates. To begin, I can create the sub-template, with
just the HTML markup for a single post. I’m going to name this
template app/templates/_post.html. The _ prefix is just a naming
convention to help me recognize which template files are sub-
templates.

Listing 6.7: app/templates/_post.html: Post sub-template

 <table>

 <tr valign="top">

 <td></td>

 <td>{{ post.author.username }} says:
{{ post.body }}</td>

 </tr>

 </table>

To invoke this sub-template from the user.html template I use Jinja2’s
include statement:

Listing 6.8: app/templates/user.html: User avatars in posts

{% extends "base.html" %}

{% block content %}

 <table>

 <tr valign="top">

 <td></td>

 <td><h1>User: {{ user.username }}</h1></td>

 </tr>

 </table>

 <hr>

 {% for post in posts %}

 {% include '_post.html' %}

 {% endfor %}

{% endblock %}

The index page of the application isn’t really fleshed out yet, so I’m not
going to add this functionality there yet.

6.4 More Interesting
Profiles
One problem the new user profile pages have is that they don’t really
show much on them. Users like to tell a bit about them on these pages,
so I’m going to let them write something about themselves to show
here. I’m also going to keep track of what was the last time each user
accessed the site and also show display it on their profile page.

The first I need to do to support all this extra information is to extend
the users table in the database with two new fields:

Listing 6.9: app/models.py: New fields in user model

class User(UserMixin, db.Model):

 # ...

 about_me = db.Column(db.String(140))

 last_seen = db.Column(db.DateTime, default=datetime.utcnow)

Every time the database is modified it is necessary to generate a
database migration. In Chapter 4 I showed you how to set up the
application to track database changes through migration scripts. Now
I have two new fields that I want to add to the database, so the first
step is to generate the migration script:

(venv) $ flask db migrate -m "new fields in user model"

INFO [alembic.runtime.migration] Context impl SQLiteImpl.

INFO [alembic.runtime.migration] Will assume non-transactional DDL.

INFO [alembic.autogenerate.compare] Detected added column 'user.about_me'

INFO [alembic.autogenerate.compare] Detected added column 'user.last_seen'

 Generating migrations/versions/37f06a334dbf_new_fields_in_user_model.py ... done

The output of the migrate command looks good, as it shows that the
two new fields in the User class were detected. Now I can apply this
change to the database:

(venv) $ flask db upgrade

INFO [alembic.runtime.migration] Context impl SQLiteImpl.

INFO [alembic.runtime.migration] Will assume non-transactional DDL.

INFO [alembic.runtime.migration] Running upgrade 780739b227a7 -> 37f06a334dbf, new fields in user model

I hope you realize how useful it is to work with a migration
framework. Any users that were in the database are still there, the
migration framework surgically applies the changes in the migration
script without destroying any data.

For the next step, I’m going to add these two new fields to the user
profile template:

Listing 6.10: app/templates/user.html: Show user information in
user profile template

{% extends "base.html" %}

{% block content %}

 <table>

 <tr valign="top">

 <td></td>

 <td>

 <h1>User: {{ user.username }}</h1>

 {% if user.about_me %}<p>{{ user.about_me }}</p>{% endif %}

 {% if user.last_seen %}<p>Last seen on: {{ user.last_seen }}</p>{% endif

 </td>

 </tr>

 </table>

 ...

{% endblock %}

Note that I’m wrapping these two fields in Jinja2’s conditionals,
because I only want them to be visible if they are set. At this point
these two new fields are empty for all users, so you are not going to see
these fields if you run the application now.

6.5 Recording The Last Visit
Time For a User
Let’s start with the last_seen field, which is the easier of the two.
What I want to do is write the current time on this field for a given
user whenever that user sends a request to the server.

Adding the login to set this field on every possible view function that
can be requested from the browser is obviously impractical, but
executing a bit of generic logic ahead of a request being dispatched to a
view function is such a common task in web applications that Flask
offers it as a native feature. Take a look at the solution:

Listing 6.11: app/routes.py: Record time of last visit

from datetime import datetime

@app.before_request

def before_request():

 if current_user.is_authenticated:

 current_user.last_seen = datetime.utcnow()

 db.session.commit()

The @before_request decorator from Flask register the decorated
function to be executed right before the view function. This is
extremely useful because now I can insert code that I want to execute
before any view function in the application, and I can have it in a
single place. The implementation simply checks if the current_user is
logged in, and in that case sets the last_seen field to the current time.
I mentioned this before, a server application needs to work in
consistent time units, and the standard practice is to use the UTC time
zone. Using the local time of the system is not a good idea, because
then what goes in the database is dependent on your location. The last
step is to commit the database session, so that the change made above

is written to the database. If you are wondering why there is no
db.session.add() before the commit, consider that when you reference
current_user, Flask-Login will invoke the user loader callback
function, which will run a database query that will put the target user
in the database session. So you can add the user again in this function,
but it is not necessary because it is already there.

If you view your profile page after you make this change, you will see
the “Last seen on” line with a time that is very close to the current
time. And if you navigate away from the profile page and then return,
you will see that the time is constantly updated.

The fact that I’m storing these timestamps in the UTC timezone makes
the time displayed on the profile page also be in UTC. In addition to
that, the format of the time is not what you would expect, since it is
actually the internal representation of the Python datetime object. For
now, I’m not going to worry about these two issues, since I’m going to
address the topic of handling dates and times in a web application in a
later chapter.

6.6 Profile Editor
I also need to give users a form in which they can enter some
information about themselves. The form is going to let users change
their username, and also write something about themselves, to be
stored in the new about_me field. Let’s start writing a form class for it:

Listing 6.12: app/forms.py: Profile editor form

from wtforms import StringField, TextAreaField, SubmitField

from wtforms.validators import DataRequired, Length

...

class EditProfileForm(FlaskForm):

 username = StringField('Username', validators=[DataRequired()])

 about_me = TextAreaField('About me', validators=[Length(min=0, max=140)])

 submit = SubmitField('Submit')

I’m using a new field type and a new validator in this form. For the
“About” field I’m using a TextAreaField, which is a multi-line box in
which the user can enter text. To validate this field I’m using Length,
which will make sure that the text entered is between 0 and 140
characters, which is the space I have allocated for the corresponding
field in the database.

The template that renders this form is shown below:

Listing 6.13: app/templates/edit_profile.html: Profile editor form

{% extends "base.html" %}

{% block content %}

 <h1>Edit Profile</h1>

 <form action="" method="post">

 {{ form.hidden_tag() }}

 <p>

 {{ form.username.label }}

 {{ form.username(size=32) }}

 {% for error in form.username.errors %}

 [{{ error }}]

 {% endfor %}

 </p>

 <p>

 {{ form.about_me.label }}

 {{ form.about_me(cols=50, rows=4) }}

 {% for error in form.about_me.errors %}

 [{{ error }}]

 {% endfor %}

 </p>

 <p>{{ form.submit() }}</p>

 </form>

{% endblock %}

And finally, here is the view function that ties everything together:

Listing 6.14: app/routes.py: Edit profile view function

from app.forms import EditProfileForm

@app.route('/edit_profile', methods=['GET', 'POST'])

@login_required

def edit_profile():

 form = EditProfileForm()

 if form.validate_on_submit():

 current_user.username = form.username.data

 current_user.about_me = form.about_me.data

 db.session.commit()

 flash('Your changes have been saved.')

 return redirect(url_for('edit_profile'))

 elif request.method == 'GET':

 form.username.data = current_user.username

 form.about_me.data = current_user.about_me

 return render_template('edit_profile.html', title='Edit Profile',

 form=form)

This view function processes the form in a slightly different way. If
validate_on_submit() returns True I copy the data from the form into
the user object and then write the object to the database. But when
validate_on_submit() returns False it can be due to two different
reasons. First, it can be because the browser just sent a GET request,
which I need to respond by providing an initial version of the form
template. It can also be when the browser sends a POST request with
form data, but something in that data is invalid. For this form, I need
to treat these two cases separately. When the form is being requested
for the first time with a GET request, I want to pre-populate the fields
with the data that is stored in the database, so I need to do the reverse
of what I did on the submission case and move the data stored in the

user fields to the form, as this will ensure that those form fields have
the current data stored for the user. But in the case of a validation
error I do not want to write anything to the form fields, because those
were already populated by WTForms. To distinguish between these
two cases, I check request.method, which will be GET for the initial
request, and POST for a submission that failed validation.

To make it easy for users to access the profile editor page, I can add a
link in their profile page:

Listing 6.15: app/templates/user.html: Edit profile link

 {% if user == current_user %}

 <p>Edit your profile</p>

 {% endif %}

Pay attention to the clever conditional I’m using to make sure that the
Edit link appears when you are viewing your own profile, but not when
you are viewing the profile of someone else.

Chapter 7

Error Handling
In this chapter I’m taking a break from coding new features into my
microblog application, and instead will discuss a few strategies to deal
with bugs, which invariably make an appearance in any software
project. To help illustrate this topic, I intentionally let a bug slip in the
code that I’ve added in Chapter 6. Before you continue reading, see if
you can find it!

The GitHub links for this chapter are: Browse, Zip, Diff.

https://github.com/miguelgrinberg/microblog/tree/v0.7
https://github.com/miguelgrinberg/microblog/archive/v0.7.zip
https://github.com/miguelgrinberg/microblog/compare/v0.6...v0.7

7.1 Error Handling in Flask
What happens when an error occurs in a Flask application? The best
way to find out is to experience it first hand. Go ahead and start the
application, and make sure you have at least two users registered. Log
in as one of the users, open the profile page and click the “Edit” link.
In the profile editor, try to change the username to the username of
another user that is already registered, and boom! This is going to
bring a scary looking “Internal Server Error” page:

If you look in the terminal session where the application is running,
you will see a stack trace of the error. Stack traces are extremely useful
in debugging errors, because they show the sequence of calls in that
stack, all the way to the line that produced the error:

http://en.wikipedia.org/wiki/Stack_trace

(venv) $ flask run

 * Serving Flask app "microblog"

 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

[2017-09-14 22:40:02,027] ERROR in app: Exception on /edit_profile [POST]

Traceback (most recent call last):

 File "venv/lib/python3.6/site-packages/sqlalchemy/engine/base.py", in _execute_context

 context)

 File "venv/lib/python3.6/site-packages/sqlalchemy/engine/default.py", in do_execute

 cursor.execute(statement, parameters)

sqlite3.IntegrityError: UNIQUE constraint failed: user.username

The stack trace indicates what is the bug. The application allows a
user to change the username, and does not validate that the new
username chosen does not collide with another user already in the
system. The error comes from SQLAlchemy, which tries to write the
new username to the database, but the database rejects it because the
username column is defined with unique=True.

It is important to note that the error page that is presented to the user
does not provide much information about the error, and that is good. I
definitely do not want users to learn that the crash was caused by a
database error, or what database I’m using, or what are some of the
table and field names in my database. All that information should be
kept internal.

There are a few things that are far from ideal. I have an error page that
is very ugly and does not match the application layout. I also have
important application stack traces being dumped on a terminal that I
need to constantly watch to make sure I don’t miss any errors. And of
course I have a bug to fix. I’m going to address all these issues, but
first, let’s talk about Flask’s debug mode.

7.2 Debug Mode
The way you saw that errors are handled above is great for a system
that is running on a production server. If there is an error, the user
gets a vague error page (though I’m going to make this error page
nicer), and the important details of the error are in the server process
output or in a log file.

But when you are developing your application, you can enable debug
mode, a mode in which Flask outputs a really nice debugger directly
on your browser. To activate debug mode, stop the application, and
then set the following environment variable:

(venv) $ export FLASK_DEBUG=1

If you are on Microsoft Windows, remember to use set instead of
export.

After you set FLASK_DEBUG, restart the server. The output on your
terminal is going to be slightly different than what you are used to see:

(venv) microblog2 $ flask run

 * Serving Flask app "microblog"

 * Forcing debug mode on

 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

 * Restarting with stat

 * Debugger is active!

 * Debugger PIN: 177-562-960

Now make the application crash one more time to see the interactive
debugger in your browser:

The debugger allows you expand each stack frame and see the
corresponding source code. You can also open a Python prompt on
any of the frames and execute any valid Python expressions, for
example to check the values of variables.

It is extremely important that you never run a Flask application in
debug mode on a production server. The debugger allows the user to
remotely execute code in the server, so it can be an unexpected gift to a
malicious user who wants to infiltrate your application or your server.
As an additional security measure, the debugger running in the
browser starts locked, and on first use will ask for a PIN number,
which you can see in the output of the flask run command.

Since I am in the topic of debug mode, I should mention the second

important feature that is enabled with debug mode, which is the
reloader. This is a very useful development feature that automatically
restarts the application when a source file is modified. If you run
flask run while in debug mode, you can then work on your application
and any time you save a file, the application will restart to pick up the
new code.

7.3 Custom Error Pages
Flask provides a mechanism for an application to install its own error
pages, so that your users don’t have to see the plain and boring default
ones. As an example, let’s define custom error pages for the HTTP
errors 404 and 500, the two most common ones. Defining pages for
other errors works in the same way.

To declare a custom error handler, the @errorhandler decorator is
used. I’m going to put my error handlers in a new app/errors.py
module.

Listing 7.1: app/errors.py: Custom error handlers

from flask import render_template

from app import app, db

@app.errorhandler(404)

def not_found_error(error):

 return render_template('404.html'), 404

@app.errorhandler(500)

def internal_error(error):

 db.session.rollback()

 return render_template('500.html'), 500

The error functions work very similarly to view functions. For these
two errors, I’m returning the contents of their respective templates.
Note that both functions return a second value after the template,
which is the error code number. For all the view functions that I
created so far, I did not need to add a second return value because the
default of 200 (the status code for a successful response) is what I
wanted. In this case these are error pages, so I want the status code of
the response to reflect that.

The error handler for the 500 errors could be invoked after a database
error, which was actually the case with the username duplicate above.

To make sure any failed database sessions do not interfere with any
database accesses triggered by the template, I issue a session rollback.
This resets the session to a clean state.

Here is the template for the 404 error:

Listing 7.2: app/templates/404.html: Not found error template

{% extends "base.html" %}

{% block content %}

 <h1>File Not Found</h1>

 <p>Back</p>

{% endblock %}

And here is the one for the 500 error:

Listing 7.3: app/templates/500.html: Internal server error
template

{% extends "base.html" %}

{% block content %}

 <h1>An unexpected error has occurred</h1>

 <p>The administrator has been notified. Sorry for the inconvenience!</p>

 <p>Back</p>

{% endblock %}

Both templates inherit from the base.html template, so that the error
page has the same look and feel as the normal pages of the application.

To get these error handlers registered with Flask, I need to import the
new app/errors.py module after the application instance is created:

Listing 7.4: app/__init__.py: Import error handlers

...

from app import routes, models, errors

If you set FLASK_DEBUG=0 in your terminal session and then trigger the
duplicate username bug one more time, you are going to see a slightly
more friendly error page.

7.4 Sending Errors by Email
The other problem with the default error handling provided by Flask is
that there are no notifications, stack trace for errors are printed to the
terminal, which means that the output of the server process needs to
be monitored to discover errors. When you are running the
application during development, this is perfectly fine, but once the
application is deployed on a production server, nobody is going to be
looking at the output, so a more robust solution needs to be put in
place.

I think it is very important that I take a proactive approach regarding
errors. If an error occurs on the production version of the application,
I want to know right away. So my first solution is going to be to
configure Flask to send me an email immediately after an error, with
the stack trace of the error in the email body.

The first step is to add the email server details to the configuration file:

Listing 7.5: config.py: Email configuration

class Config(object):

 # ...

 MAIL_SERVER = os.environ.get('MAIL_SERVER')

 MAIL_PORT = int(os.environ.get('MAIL_PORT') or 25)

 MAIL_USE_TLS = os.environ.get('MAIL_USE_TLS') is not None

 MAIL_USERNAME = os.environ.get('MAIL_USERNAME')

 MAIL_PASSWORD = os.environ.get('MAIL_PASSWORD')

 ADMINS = ['your-email@example.com']

The configuration variables for email include the server and port, a
boolean flag to enable encrypted connections, and optional username
and password. The five configuration variables are sourced from their
environment variable counterparts. If the email server is not set in the
environment, then I will use that as a sign that emailing errors needs
to be disabled. The email server port can also be given in an

environment variable, but if not set, the standard port 25 is used.
Email server credentials are by default not used, but can be provided if
needed. The ADMINS configuration variable is a list of the email
addresses that will receive error reports, so your own email address
should be in that list.

Flask uses Python’s logging package to write its logs, and this package
already has the ability to send logs by email. All I need to do to get
emails sent out on errors is to add a SMTPHandler instance to the
Flask logger object, which is app.logger:

Listing 7.6: app/__init__.py: Log errors by email

import logging

from logging.handlers import SMTPHandler

...

if not app.debug:

 if app.config['MAIL_SERVER']:

 auth = None

 if app.config['MAIL_USERNAME'] or app.config['MAIL_PASSWORD']:

 auth = (app.config['MAIL_USERNAME'], app.config['MAIL_PASSWORD'])

 secure = None

 if app.config['MAIL_USE_TLS']:

 secure = ()

 mail_handler = SMTPHandler(

 mailhost=(app.config['MAIL_SERVER'], app.config['MAIL_PORT']),

 fromaddr='no-reply@' + app.config['MAIL_SERVER'],

 toaddrs=app.config['ADMINS'], subject='Microblog Failure',

 credentials=auth, secure=secure)

 mail_handler.setLevel(logging.ERROR)

 app.logger.addHandler(mail_handler)

As you can see, I’m only going to enable the email logger when the
application is running without debug mode, which is indicated by
app.debug being True, and also when the email server exists in the
configuration.

Setting up the email logger is somewhat tedious due to having to
handle optional security options that are present in many email
servers. But in essence, the code above creates a SMTPHandler instance,
sets its level so that it only reports errors and not warnings,
informational or debugging messages, and finally attaches it to the
app.logger object from Flask.

https://docs.python.org/3.6/library/logging.handlers.html#smtphandler

There are two approaches to test this feature. The easiest one is to use
the SMTP debugging server from Python. This is a fake email server
that accepts emails, but instead of sending them, it prints them to the
console. To run this server, open a second terminal session and run
the following command on it:

(venv) $ python -m smtpd -n -c DebuggingServer localhost:8025

Leave the debugging SMTP server running and go back to your first
terminal and set export MAIL_SERVER=localhost and MAIL_PORT=8025 in
the environment (use set instead of export if you are using Microsoft
Windows). Make sure the FLASK_DEBUG variable is set to 0 or not set at
all, since the application will not send emails in debug mode. Run the
application and trigger the SQLAlchemy error one more time to see
how the terminal session running the fake email server shows an email
with the full stack trace of the error.

A second testing approach for this feature is to configure a real email
server. Below is the configuration to use your Gmail account’s email
server:

export MAIL_SERVER=smtp.googlemail.com

export MAIL_PORT=587

export MAIL_USE_TLS=1

export MAIL_USERNAME=<your-gmail-username>

export MAIL_PASSWORD=<your-gmail-password>

If you are using Microsoft Windows, remember to use set instead of
export in each of the statements above.

The security features in your Gmail account may prevent the
application from sending emails through it unless you explicitly allow
“less secure apps” access to your Gmail account. You can read about
this here, and if you are concerned about the security of your account,
you can create a secondary account that you configure just for testing
emails, or you can enable less secure apps only temporarily to run this
test and then revert back to the default.

https://support.google.com/accounts/answer/6010255?hl=en

7.5 Logging to a File
Receiving errors via email is nice, but sometimes this isn’t enough.
There are some failure conditions that do not end in a Python
exception and are not a major problem, but they may still be
interesting enough to save for debugging purposes. For this reason,
I’m also going to maintain a log file for the application.

To enable a file based log another handler, this time of type
RotatingFileHandler, needs to be attached to the application logger, in
a similar way to the email handler.

Listing 7.7: app/__init__.py: Logging to a file

...

from logging.handlers import RotatingFileHandler

import os

...

if not app.debug:

 # ...

 if not os.path.exists('logs'):

 os.mkdir('logs')

 file_handler = RotatingFileHandler('logs/microblog.log', maxBytes=10240,

 backupCount=10)

 file_handler.setFormatter(logging.Formatter(

 '%(asctime)s %(levelname)s: %(message)s [in %(pathname)s:%(lineno)d]'))

 file_handler.setLevel(logging.INFO)

 app.logger.addHandler(file_handler)

 app.logger.setLevel(logging.INFO)

 app.logger.info('Microblog startup')

I’m writing the log file with name microblog.log in a logs directory,
which I create if it doesn’t already exist.

The RotatingFileHandler class is nice because it rotates the logs,
ensuring that the log files do not grow too large when the application
runs for a long time. In this case I’m limiting the size of the log file to

https://docs.python.org/3.6/library/logging.handlers.html#rotatingfilehandler

10KB, and I’m keeping the last ten log files as backup.

The logging.Formatter class provides custom formatting for the log
messages. Since these messages are going to a file, I want them to
have as much information as possible. So I’m using a format that
includes the timestamp, the logging level, the message and the source
file and line number from where the log entry originated.

To make the logging more useful, I’m also lowering the logging level to
the INFO category, both in the application logger and the file logger
handler. In case you are not familiar with the logging categories, they
are DEBUG, INFO, WARNING, ERROR and CRITICAL in increasing order of
severity.

As a first interesting use of the log file, the server writes a line to the
logs each time it starts. When this application runs on a production
server, these log entries will tell you when the server was restarted.

7.6 Fixing the Duplicate
Username Bug
I have exploited the username duplication bug for too long. Now that I
have showed you how to prepare the application to handle this type of
errors, I can go ahead and fix it.

If you recall, the RegistrationForm already implements validation for
usernames, but the requirements of the edit form are slightly
different. During registration, I need to make sure the username
entered in the form does not exist in the database. On the edit profile
form I have to do the same check, but with one exception. If the user
leaves the original username untouched, then the validation should
allow it, since that username is already assigned to that user. Below
you can see how I implemented the username validation for this form:

Listing 7.8: app/forms.py: Validate username in edit profile form.

class EditProfileForm(FlaskForm):

 username = StringField('Username', validators=[DataRequired()])

 about_me = TextAreaField('About me', validators=[Length(min=0, max=140)])

 submit = SubmitField('Submit')

 def __init__(self, original_username, *args, **kwargs):

 super(EditProfileForm, self).__init__(*args, **kwargs)

 self.original_username = original_username

 def validate_username(self, username):

 if username.data != self.original_username:

 user = User.query.filter_by(username=self.username.data).first()

 if user is not None:

 raise ValidationError('Please use a different username.')

The implementation is in a custom validation method, but there is an
overloaded constructor that accepts the original username as an
argument. This username is saved as an instance variable, and
checked in the validate_username() method. If the username entered

in the form is the same as the original username, then there is no
reason to check the database for duplicates.

To use this new validation method, I need to add the original
username argument in the view function, where the form object is
created:

Listing 7.9: app/routes.py: Validate username in edit profile form.

@app.route('/edit_profile', methods=['GET', 'POST'])

@login_required

def edit_profile():

 form = EditProfileForm(current_user.username)

 # ...

Now the bug is fixed and duplicates in the edit profile form will be
prevented in most cases. This is not a perfect solution, because it may
not work when two or more processes are accessing the database at
the same time. In that situation, a race condition could cause the
validation to pass, but a moment later when the rename is attempted
the database was already changed by another process and cannot
rename the user. This is somewhat unlikely except for very busy
applications that have a lot of server processes, so I’m not going to
worry about it for now.

At this point you can try to reproduce the error one more time to see
how the new form validation method prevents it.

Chapter 8

Followers
In this chapter I am going to work on the application’s database some
more. I want users of the application to be able to easily choose which
other users they want to follow. So I’m going to be expanding the
database so that it can keep track of who is following whom, which is
harder than you may think.

The GitHub links for this chapter are: Browse, Zip, Diff.

https://github.com/miguelgrinberg/microblog/tree/v0.8
https://github.com/miguelgrinberg/microblog/archive/v0.8.zip
https://github.com/miguelgrinberg/microblog/compare/v0.7...v0.8

8.1 Database Relationships
Revisited
I said above that I want to maintain a list of “followed” and “follower”
users for each user. Unfortunately, a relational database does not have
a list type that I can use for these lists, all there is are tables with
records and relationships between these records.

The database has a table that represents users, so what’s left is to come
up with the proper relationship type that can model the
follower/followed link. This is a good time to review the basic
database relationship types:

8.1.1 One-to-Many

I have already used a one-to-many relationship in Chapter 4. Here is
the diagram for this relationship:

The two entities linked by this relationship are users and posts. I say
that a user has many posts, and a post has one user (or author). The
relationship is represented in the database with the use of a foreign
key on the “many” side. In the relationship above, the foreign key is
the user_id field added to the posts table. This field links each post to

the record of its author in the user table.

It is pretty clear that the user_id field provides direct access to the
author of a given post, but what about the reverse direction? For the
relationship to be useful I should be able to get the list of posts written
by a given user. The user_id field in the posts table is also sufficient to
answer this question, as databases have indexes that allow for efficient
queries such us “retrieve all posts that have a user_id of X”.

8.1.2 Many-to-Many

A many-to-many relationship is a bit more complex. As an example,
consider a database that has students and teachers. I can say that a
student has many teachers, and a teacher has many students. It’s like
two overlapped one-to-many relationships from both ends.

For a relationship of this type I should be able to query the database
and obtain the list of teachers that teach a given student, and the list of
students in a teacher’s class. This is actually non-trivial to represent in
a relational database, as it cannot be done by adding foreign keys to
the existing tables.

The representation of a many-to-many relationship requires the use of
an auxiliary table called an association table. Here is how the
database would look for the students and teachers example:

While it may not seem obvious at first, the association table with its
two foreign keys is able to efficiently answer all the queries about the
relationship.

8.1.3 Many-to-One and One-to-One

A many-to-one is similar to a one-to-many relationship. The
difference is that this relationship is looked at from the “many” side.

A one-to-one relationship is a special case of a one-to-many. The
representation is similar, but a constraint is added to the database to
prevent the “many” side to have more than one link. While there are
cases in which this type of relationship is useful, it isn’t as common as
the other types.

8.2 Representing Followers
Looking at the summary of all the relationship types, it is easy to
determine that the proper data model to track followers is the many-
to-many relationship, because a user follows many users, and a user
has many followers. But there is a twist. In the students and teachers
example I had two entities that were related through the many-to-
many relationship. But in the case of followers, I have users following
other users, so there is just users. So what is the second entity of the
many-to-many relationship?

The second entity of the relationship is also the users. A relationship
in which instances of a class are linked to other instances of the same
class is called a self-referential relationship, and that is exactly what I
have here.

Here is a diagram of the self-referential many-to-many relationship
that keeps track of followers:

The followers table is the association table of the relationship. The
foreign keys in this table are both pointing at entries in the user table,
since it is linking users to users. Each record in this table represents
one link between a follower user and a followed user. Like the
students and teachers example, a setup like this one allows the
database to answer all the questions about followed and follower users

that I will ever need. Pretty neat.

8.3 Database Model
Representation
Let’s add followers to the database first. Here is the followers
association table:

Listing 8.1: app/models.py: Followers association table

followers = db.Table('followers',

 db.Column('follower_id', db.Integer, db.ForeignKey('user.id')),

 db.Column('followed_id', db.Integer, db.ForeignKey('user.id'))

)

This is a direct translation of the association table from my diagram
above. Note that I am not declaring this table as a model, like I did for
the users and posts tables. Since this is an auxiliary table that has no
data other than the foreign keys, I created it without an associated
model class.

Now I can declare the many-to-many relationship in the users table:

Listing 8.2: app/models.py: Many-to-many followers relationship

class User(UserMixin, db.Model):

 # ...

 followed = db.relationship(

 'User', secondary=followers,

 primaryjoin=(followers.c.follower_id == id),

 secondaryjoin=(followers.c.followed_id == id),

 backref=db.backref('followers', lazy='dynamic'), lazy='dynamic')

The setup of the relationship is non-trivial. Like I did for the posts
one-to-many relationship, I’m using the db.relationship function to
define the relationship in the model class. This relationship links User
instances to other User instances, so as a convention let’s say that for a
pair of users linked by this relationship, the left side user is following

the right side user. I’m defining the relationship as seen from the left
side user with the name followed, because when I query this
relationship from the left side I will get the list of followed users (i.e
those on the right side). Let’s examine all the arguments to the
db.relationship() call one by one:

’User’ is the right side entity of the relationship (the left side
entity is the parent class). Since this is a self-referential
relationship, I have to use the same class on both sides.
secondary configures the association table that is used for this
relationship, which I defined right above this class.
primaryjoin indicates the condition that links the left side entity
(the follower user) with the association table. The join condition
for the left side of the relationship is the user ID matching the
follower_id field of the association table. The value of this
argument is followers.c.follower_id, which qreferences the
follower_id column of the association table.
secondaryjoin indicates the condition that links the right side
entity (the followed user) with the association table. This
condition is similar to the one for primaryjoin, with the only
difference that now I’m using followed_id, which is the other
foreign key in the association table.
backref defines how this relationship will be accessed from the
right side entity. From the left side, the relationship is named
followed, so from the right side I am going to use the name
followers to represent all the left side users that are linked to the
target user in the right side. The additional lazy argument
indicates the execution mode for this query. A mode of dynamic
sets up the query to not run until specifically requested, which is
also how I set up the posts one-to-many relationship.
lazy is similar to the parameter of the same name in the backref,
but this one applies to the left side query instead of the right side.

Don’t worry if this is hard to understand. I will show you how to work
with these queries in a moment, and then everything will become

clearer.

The changes to the database need to be recorded in a new database
migration:

(venv) $ flask db migrate -m "followers"

INFO [alembic.runtime.migration] Context impl SQLiteImpl.

INFO [alembic.runtime.migration] Will assume non-transactional DDL.

INFO [alembic.autogenerate.compare] Detected added table 'followers'

 Generating /home/miguel/microblog/migrations/versions/ae346256b650_followers.py ... done

(venv) $ flask db upgrade

INFO [alembic.runtime.migration] Context impl SQLiteImpl.

INFO [alembic.runtime.migration] Will assume non-transactional DDL.

INFO [alembic.runtime.migration] Running upgrade 37f06a334dbf -> ae346256b650, followers

8.4 Adding and Removing
“follows”
Thanks to the SQLAlchemy ORM, a user following another user can be
recorded in the database working with the followed relationship as if it
was a list. For example, if I had two users stored in user1 and user2
variables, I can make the first follow the second with this simple
statement:

user1.followed.append(user2)

To stop following the user, then I could do:

user1.followed.remove(user2)

Even though adding and removing followers is fairly easy, I want to
promote reusability in my code, so I’m not going to sprinkle “appends”
and “removes” through the code. Instead, I’m going to implement the
“follow” and “unfollow” functionality as methods in the User model. It
is always best to move the application logic away from view functions
and into models or other auxiliary classes or modules, because as you
will see later in this chapter, that makes unit testing much easier.

Below are the changes in the user model to add and remove
relationships:

Listing 8.3: app/models.py: Add and remove followers

class User(UserMixin, db.Model):

 #...

 def follow(self, user):

 if not self.is_following(user):

 self.followed.append(user)

 def unfollow(self, user):

 if self.is_following(user):

 self.followed.remove(user)

 def is_following(self, user):

 return self.followed.filter(

 followers.c.followed_id == user.id).count() > 0

The follow() and unfollow() methods use the append() and remove()
methods of the relationship object as I have shown above, but before
they touch the relationship they use the is_following() supporting
method to make sure the requested action makes sense. For example,
if I ask user1 to follow user2, but it turns out that this following
relationship already exists in the database, I do not want to add a
duplicate. The same logic can be applied to unfollowing.

The is_following() method issues a query on the followed
relationship to check if a link between two users already exists. You
have seen me use the filter_by() method of the SQLAlchemy query
object before, for example to find a user given its username. The
filter() method that I’m using here is similar, but lower level, as it
can include arbitrary filtering conditions, unlike filter_by() which
can only check for equality to a constant value. The condition that I’m
using in is_following() looks for items in the association table that
have the left side foreign key set to the self user, and the right side set
to the user argument. The query is terminated with a count() method,
which returns the number of results. The result of this query is going
to be 0 or 1, so checking for the count being 1 or greater than 0 is
actually equivalent. Other query terminators you have seen me use in
the past are all() and first().

8.5 Obtaining the Posts
from Followed Users
Support for followers in the database is almost complete, but I’m
actually missing one important feature. In the index page of the
application I’m going to show blog posts written by all the people that
are followed by the logged in user, so I need to come up with a
database query that returns these posts.

The most obvious solution is to run a query that returns the list of
followed users, which as you already know, it would be
user.followed.all(). Then for each of these returned users I can run
a query to get the posts. Once I have all the posts I can merge them
into a single list and sort them by date. Sounds good? Well, not really.

This approach has a couple of problems. What happens if a user is
following a thousand people? I would need to execute a thousand
database queries just to collect all the posts. And then I will need to
merge and sort the thousand lists in memory. As a secondary
problem, consider that the application’s home page will eventually
have pagination implemented, so it will not display all the available
posts but just the first few, with a link to get more if desired. If I’m
going to display posts sorted by their date, how can I know which
posts are the most recent of all followed users combined, unless I get
all the posts and sort them first? This is actually an awful solution that
does not scale well.

There is really no way to avoid this merging and sorting of blog posts,
but doing it in the application results in a very inefficient process. This
kind of work is what relational databases excel at. The database has
indexes that allow it to perform the queries and the sorting in a much
more efficient way that I can possibly do from my side. So what I

really want is to come up with a single database query that defines the
information that I want to get, and then let the database figure out
how to extract that information in the most efficient way.

Below you can see this query:

Listing 8.4: app/models.py: Followed posts query

class User(UserMixin, db.Model):

 #...

 def followed_posts(self):

 return Post.query.join(

 followers, (followers.c.followed_id == Post.user_id)).filter(

 followers.c.follower_id == self.id).order_by(

 Post.timestamp.desc())

This is by far the most complex query I have used on this application.
I’m going to try to decipher this query one piece at a time. If you look
at the structure of this query, you are going to notice that there are
three main sections designed by the join(), filter() and order_by()
methods of the SQLAlchemy query object:

Post.query.join(...).filter(...).order_by(...)

8.5.1 Joins

To understand what a join operation does, let’s look at an example.
Let’s assume that I have a User table with the following contents:

id username

1 john

2 susan

3 mary

4 david

To keep things simple I am not showing all the fields in the user
model, just the ones that are important for this query.

Let’s say that the followers association table says that user john is
following users susan and david, user susan is following mary and user
mary is following david. The data that represents the above is this:

follower_id followed_id

1 2

1 4

2 3

3 4

Finally, the posts table contains one post from each user:

id text user_id

1 post from susan 2

2 post from mary 3

3 post from david 4

4 post from john 1

This table also omits some fields that are not part of this discussion.

Here is the join() call that I defined for this query once again:

Post.query.join(followers, (followers.c.followed_id == Post.user_id))

I’m invoking the join operation on the posts table. The first argument
is the followers association table, and the second argument is the join
condition. What I’m saying with this call is that I want the database to
create a temporary table that combines data from posts and followers

tables. The data is going to be merged according to the condition that
I passed as argument.

The condition that I used says that the followed_id field of the
followers table must be equal to the user_id of the posts table. To
perform this merge, the database will take each record from the posts
table (the left side of the join) and append any records from the
followers table (the right side of the join) that match the condition. If
multiple records in followers match the condition, then the post entry
will be repeated for each. If for a given post there is no match in
followers, then that post record is not part of the join.

With the example data I defined above, the result of the join operation
is:

id text user_id follower_id followed_id

1 post from susan 2 1 2

2 post from mary 3 2 3

3 post from david 4 1 4

3 post from david 4 3 4

Note how the user_id and followed_id columns are equal in all cases,
as this was the join condition. The post from user john does not
appear in the joined table because there are no entries in followers
that have john as a followed user, or in other words, nobody is
following john. And the post from david appears twice, because that
user is followed by two different users.

It may not be immediately clear what do I gain by creating this join,
but keep reading, as this is just one part of the bigger query.

8.5.2 Filters

The join operation gave me a list of all the posts that are followed by
some user, which is a lot more data that I really want. I’m only
interested in a subset of this list, the posts followed by a single user, so
I need trim all the entries I don’t need, which I can do with a filter()
call.

Here is the filter portion of the query:

filter(followers.c.follower_id == self.id)

Since this query is in a method of class User, the self.id expression
refers to the user ID of the user I’m interested in. The filter() call
selects the items in the joined table that have the follower_id column
set to this user, which in other words means that I’m keeping only the
entries that have this user as a follower.

Let’s say the user I’m interested in is john, which has its id field set to
1. Here is how the joined table looks after the filtering:

id text user_id follower_id followed_id

1 post from susan 2 1 2

3 post from david 4 1 4

And these are exactly the posts that I wanted!

Remember that the query was issued on the Post class, so even though
I ended up with a temporary table that was created by the database as
part of this query, the result will be the posts that are included in this
temporary table, without the extra columns added by the join
operation.

8.5.3 Sorting

The final step of the process is to sort the results. The part of the query
that does that says:

order_by(Post.timestamp.desc())

Here I’m saying that I want the results sorted by the timestamp field of
the post in descending order. With this ordering, the first result will
be the most recent blog post.

8.6 Combining Own and
Followed Posts
The query that I’m using in the followed_posts() function is extremely
useful, but has one limitation. People expect to see their own posts
included in their timeline of followed users, and the query as it is does
not have that capability.

There are two possible ways to expand this query to include the user’s
own posts. The most straightforward way is to leave the query as it is,
but make sure all users are following themselves. If you are your own
follower, then the query as shown above will find your own posts along
with those of all the people you follow. The disadvantage of this
method is that it affects the stats regarding followers. All follower
counts are going to be inflated by one, so they’ll have to be adjusted
before they are shown. The second way to do this is by create a second
query that returns the user’s own posts, and then use the “union”
operator to combine the two queries into a single one.

After considering both options I decided to go with the second one.
Below you can see the followed_posts() function after it has been
expanded to include the user’s posts through a union:

Listing 8.5: app/models.py: Followed posts query with user’s own
posts.

 def followed_posts(self):

 followed = Post.query.join(

 followers, (followers.c.followed_id == Post.user_id)).filter(

 followers.c.follower_id == self.id)

 own = Post.query.filter_by(user_id=self.id)

 return followed.union(own).order_by(Post.timestamp.desc())

Note how the followed and own queries are combined into one, before

the sorting is applied.

8.7 Unit Testing the User
Model
While I don’t consider the followers implementation I have built a
“complex” feature, I think it is also not trivial. My concern when I
write non-trivial code, is to ensure that this code will continue to work
in the future, as I make modifications on different parts of the
application. The best way to ensure that code you have already written
continues to work in the future is to create a suite of automated tests
that you can re-run each time changes are made.

Python includes a very useful unittest package that makes it easy to
write and execute unit tests. Let’s write some unit tests for the existing
methods in the User class in a tests.py module:

Listing 8.6: tests.py: User model unit tests.

from datetime import datetime, timedelta

import unittest

from app import app, db

from app.models import User, Post

class UserModelCase(unittest.TestCase):

 def setUp(self):

 app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite://'

 db.create_all()

 def tearDown(self):

 db.session.remove()

 db.drop_all()

 def test_password_hashing(self):

 u = User(username='susan')

 u.set_password('cat')

 self.assertFalse(u.check_password('dog'))

 self.assertTrue(u.check_password('cat'))

 def test_avatar(self):

 u = User(username='john', email='john@example.com')

 self.assertEqual(u.avatar(128), ('https://www.gravatar.com/avatar/'

 'd4c74594d841139328695756648b6bd6'

 '?d=identicon&s=128'))

 def test_follow(self):

 u1 = User(username='john', email='john@example.com')

 u2 = User(username='susan', email='susan@example.com')

 db.session.add(u1)

 db.session.add(u2)

 db.session.commit()

 self.assertEqual(u1.followed.all(), [])

 self.assertEqual(u1.followers.all(), [])

 u1.follow(u2)

 db.session.commit()

 self.assertTrue(u1.is_following(u2))

 self.assertEqual(u1.followed.count(), 1)

 self.assertEqual(u1.followed.first().username, 'susan')

 self.assertEqual(u2.followers.count(), 1)

 self.assertEqual(u2.followers.first().username, 'john')

 u1.unfollow(u2)

 db.session.commit()

 self.assertFalse(u1.is_following(u2))

 self.assertEqual(u1.followed.count(), 0)

 self.assertEqual(u2.followers.count(), 0)

 def test_follow_posts(self):

 # create four users

 u1 = User(username='john', email='john@example.com')

 u2 = User(username='susan', email='susan@example.com')

 u3 = User(username='mary', email='mary@example.com')

 u4 = User(username='david', email='david@example.com')

 db.session.add_all([u1, u2, u3, u4])

 # create four posts

 now = datetime.utcnow()

 p1 = Post(body="post from john", author=u1,

 timestamp=now + timedelta(seconds=1))

 p2 = Post(body="post from susan", author=u2,

 timestamp=now + timedelta(seconds=4))

 p3 = Post(body="post from mary", author=u3,

 timestamp=now + timedelta(seconds=3))

 p4 = Post(body="post from david", author=u4,

 timestamp=now + timedelta(seconds=2))

 db.session.add_all([p1, p2, p3, p4])

 db.session.commit()

 # setup the followers

 u1.follow(u2) # john follows susan

 u1.follow(u4) # john follows david

 u2.follow(u3) # susan follows mary

 u3.follow(u4) # mary follows david

 db.session.commit()

 # check the followed posts of each user

 f1 = u1.followed_posts().all()

 f2 = u2.followed_posts().all()

 f3 = u3.followed_posts().all()

 f4 = u4.followed_posts().all()

 self.assertEqual(f1, [p2, p4, p1])

 self.assertEqual(f2, [p2, p3])

 self.assertEqual(f3, [p3, p4])

 self.assertEqual(f4, [p4])

if __name__ == '__main__':

 unittest.main(verbosity=2)

I have added four tests that exercise the password hashing, user avatar
and followers functionality in the user model. The setUp() and
tearDown() methods are special methods that the unit testing
framework executes before and after each test respectively. I have
implemented a little hack in setUp(), to prevent the unit tests from
using the regular database that I use for development. By changing
the application configuration to sqlite:// I get SQLAlchemy to use an
in-memory SQLite database during the tests. The db.create_all() call
creates all the database tables. This is a quick way to create a database
from scratch that is useful for testing. For development and
production use I have already shown you how to create database tables
through database migrations.

You can run the entire test suite with the following command:

(venv) $ python tests.py

test_avatar (__main__.UserModelCase) ... ok

test_follow (__main__.UserModelCase) ... ok

test_follow_posts (__main__.UserModelCase) ... ok

test_password_hashing (__main__.UserModelCase) ... ok

--

Ran 4 tests in 0.494s

OK

From now on, every time a change is made to the application, you can
re-run the tests to make sure the features that are being tested have
not been affected. Also, each time another feature is added to the
application, a unit test should be written for it.

8.8 Integrating Followers
with the Application
The support of followers in the database and models is now complete,
but I don’t have any of this functionality incorporated into the
application, so I’m going to add that now.

Because the follow and unfollow actions introduce changes in the
application, I’m going to implement them as POST requests, which are
triggered from the web browser as a result of submitting a web form.
It would be easier to implement these routes as GET requests, but then
they could be exploited in CSRF attacks. Because GET requests are
harder to protect against CSRF, they should only be used on actions
that do not introduce state changes. Implementing these as a result of
a form submission is better because then a CSRF token can be added
to the form.

But how can a follow or unfollow action be triggered from a web form
when the only thing the user needs to do is click on “Follow” or
“Unfollow”, without submitting any data? To make this work, the
form is not going to have any data fields. The only elements in the
form are going to be the CSRF token, which is implemented as a
hidden field and added automatically by Flask-WTF, and a submit
button, which is going to be what the user needs to click to trigger the
action. Since the two actions are almost identical I’m going to use the
same form for both. I’m going to call this form EmptyForm.

Listing 8.7: app/forms.py: Empty form for following and
unfollowing.

class EmptyForm(FlaskForm):

 submit = SubmitField('Submit')

http://en.wikipedia.org/wiki/Cross-site_request_forgery

Let’s add two new routes in the application to follow and unfollow a
user:

Listing 8.8: app/routes.py: Follow and unfollow routes.

from app.forms import EmptyForm

...

@app.route('/follow/<username>', methods=['POST'])

@login_required

def follow(username):

 form = EmptyForm()

 if form.validate_on_submit():

 user = User.query.filter_by(username=username).first()

 if user is None:

 flash('User {} not found.'.format(username))

 return redirect(url_for('index'))

 if user == current_user:

 flash('You cannot follow yourself!')

 return redirect(url_for('user', username=username))

 current_user.follow(user)

 db.session.commit()

 flash('You are following {}!'.format(username))

 return redirect(url_for('user', username=username))

 else:

 return redirect(url_for('index'))

@app.route('/unfollow/<username>', methods=['POST'])

@login_required

def unfollow(username):

 form = EmptyForm()

 if form.validate_on_submit():

 user = User.query.filter_by(username=username).first()

 if user is None:

 flash('User {} not found.'.format(username))

 return redirect(url_for('index'))

 if user == current_user:

 flash('You cannot unfollow yourself!')

 return redirect(url_for('user', username=username))

 current_user.unfollow(user)

 db.session.commit()

 flash('You are not following {}.'.format(username))

 return redirect(url_for('user', username=username))

 else:

 return redirect(url_for('index'))

The form handling in these routes is simpler, because we only have to
implement the submission part. Unlike other forms such as the login
and edit profile forms, these two forms do not have their own pages,
the forms will be rendered by the user() route and will appear in the
user’s profile page. The only reason why the validate_on_submit() call
can fail is if the CSRF token is missing or invalid, so in that case I just

redirect the application back to the home page.

If the form validation passes, I do some error checking before actually
carrying out the follow or unfollow action. This is to prevent
unexpected issues, and to try to provide a useful message to the user
when a problem has occurred.

To render the follow or unfollow button, I need to instantiate an
EmptyForm object and pass it to the user.html template. Because these
two actions are mutually exclusive, I can pass a single instance of this
generic form to the template:

Listing 8.9: app/routes.py: Follow and unfollow routes.

@app.route('/user/<username>')

@login_required

def user(username):

 # ...

 form = EmptyForm()

 return render_template('user.html', user=user, posts=posts, form=form)

I can now add the follow or unfollow forms in the profile page of each
user:

Listing 8.10: app/templates/user.html: Follow and unfollow links
in user profile page.

 ...

 <h1>User: {{ user.username }}</h1>

 {% if user.about_me %}<p>{{ user.about_me }}</p>{% endif %}

 {% if user.last_seen %}<p>Last seen on: {{ user.last_seen }}</p>{% endif %}

 <p>{{ user.followers.count() }} followers, {{ user.followed.count() }} following.

 {% if user == current_user %}

 <p>Edit your profile</p>

 {% elif not current_user.is_following(user) %}

 <p>

 <form action="{{ url_for('follow', username=user.username) }}" method="post"

 {{ form.hidden_tag() }}

 {{ form.submit(value='Follow') }}

 </form>

 </p>

 {% else %}

 <p>

 <form action="{{ url_for('unfollow', username=user.username) }}" method="post"

 {{ form.hidden_tag() }}

 {{ form.submit(value='Unfollow') }}

 </form>

 </p>

 {% endif %}

 ...

The changes to the user profile template add a line below the last seen
timestamp that shows how many followers and followed users this
user has. And the line that has the “Edit” link when you are viewing
your own profile now can have one of three possible links:

If the user is viewing his or her own profile, the “Edit” link shows
as before.
If the user is viewing a user that is not currently followed, the
“Follow” form shows.
If the user is viewing a user that is currently followed, the
“Unfollow” form shows.

To reuse the EmptyForm() instance for both the follow and unfollow
forms, I pass a value argument when rendering the submit button. In
a submit button, the value attribute defines the label, so with this trick
I can change the text in the submit button depending on the action
that I need to present to the user.

At this point you can run the application, create a few users and play
with following and unfollowing users. The only thing you need to
remember is to type the profile page URL of the user you want to
follow or unfollow, since there is currently no way to see a list of users.
For example, if you want to follow a user with the susan username, you
will need to type http://localhost:5000/user/susan in the browser’s
address bar to access the profile page for that user. Make sure you
check how the followed and follower user counts change as you issue
follows or unfollows.

I should be showing the list of followed posts in the index page of the
application, but I don’t have all the pieces in place to do that yet, since
users cannot write blog posts yet. So I’m going to delay this change
until that functionality is in place.

Chapter 9

Pagination
In Chapter 8 I have made several database changes that were
necessary to support the “follower” paradigm that is so popular with
social networks. With that functionality in place, I’m ready to remove
the last piece of scaffolding that I have put in place in the beginning,
the fake posts. In this chapter the application will start accepting blog
posts from users, and also deliver them in the home and profile pages.

The GitHub links for this chapter are: Browse, Zip, Diff.

https://github.com/miguelgrinberg/microblog/tree/v0.9
https://github.com/miguelgrinberg/microblog/archive/v0.9.zip
https://github.com/miguelgrinberg/microblog/compare/v0.8...v0.9

9.1 Submission of Blog
Posts
Let’s start with something simple. The home page needs to have a
form in which users can type new posts. First I create a form class:

Listing 9.1: app/forms.py: Blog submission form.

class PostForm(FlaskForm):

 post = TextAreaField('Say something', validators=[

 DataRequired(), Length(min=1, max=140)])

 submit = SubmitField('Submit')

Next, I can add this form to the template for the main page of the
application:

Listing 9.2: app/templates/index.html: Post submission form in
index template

{% extends "base.html" %}

{% block content %}

 <h1>Hi, {{ current_user.username }}!</h1>

 <form action="" method="post">

 {{ form.hidden_tag() }}

 <p>

 {{ form.post.label }}

 {{ form.post(cols=32, rows=4) }}

 {% for error in form.post.errors %}

 [{{ error }}]

 {% endfor %}

 </p>

 <p>{{ form.submit() }}</p>

 </form>

 {% for post in posts %}

 <p>

 {{ post.author.username }} says: {{ post.body }}

 </p>

 {% endfor %}

{% endblock %}

The changes in this template are similar to how previous forms were
handled. The final part is to add the form creation and handling in the
view function:

Listing 9.3: app/routes.py: Post submission form in index view
function.

from app.forms import PostForm

from app.models import Post

@app.route('/', methods=['GET', 'POST'])

@app.route('/index', methods=['GET', 'POST'])

@login_required

def index():

 form = PostForm()

 if form.validate_on_submit():

 post = Post(body=form.post.data, author=current_user)

 db.session.add(post)

 db.session.commit()

 flash('Your post is now live!')

 return redirect(url_for('index'))

 posts = [

 {

 'author': {'username': 'John'},

 'body': 'Beautiful day in Portland!'

 },

 {

 'author': {'username': 'Susan'},

 'body': 'The Avengers movie was so cool!'

 }

]

 return render_template("index.html", title='Home Page', form=form,

 posts=posts)

Let’s review the changes in this view function one by one:

I’m now importing the Post and PostForm classes
I accept POST requests in both routes associated with the index
view function in addition to GET requests, since this view function
will now receive form data.
The form processing logic inserts a new Post record into the
database.
The template receives the form object as an additional argument,
so that it can render the text field.

Before I continue, I wanted to mention something important related to

processing of web forms. Notice how after I process the form data, I
end the request by issuing a redirect to the home page. I could have
easily skipped the redirect and allowed the function to continue down
into the template rendering part, since this is already the index view
function.

So, why the redirect? It is a standard practice to respond to a POST
request generated by a web form submission with a redirect. This
helps mitigate an annoyance with how the refresh command is
implemented in web browsers. All the web browser does when you hit
the refresh key is to re-issue the last request. If a POST request with a
form submission returns a regular response, then a refresh will re-
submit the form. Because this is unexpected, the browser is going to
ask the user to confirm the duplicate submission, but most users will
not understand what the browser is asking them. But if a POST request
is answered with a redirect, the browser is now instructed to send a
GET request to grab the page indicated in the redirect, so now the last
request is not a POST request anymore, and the refresh command
works in a more predictable way.

This simple trick is called the Post/Redirect/Get pattern. It avoids
inserting duplicate posts when a user inadvertently refreshes the page
after submitting a web form.

https://en.wikipedia.org/wiki/Post/Redirect/Get

9.2 Displaying Blog Posts
If you recall, I created a couple of fake blog posts that I’ve been
displaying in the home page for a long time. These fake objects are
created explicitly in the index view function as a simple Python list:

 posts = [

 {

 'author': {'username': 'John'},

 'body': 'Beautiful day in Portland!'

 },

 {

 'author': {'username': 'Susan'},

 'body': 'The Avengers movie was so cool!'

 }

]

But now I have the followed_posts() method in the User model that
returns a query for the posts that a given user wants to see. So now I
can replace the fake posts with real posts:

Listing 9.4: app/routes.py: Display real posts in home page.

@app.route('/', methods=['GET', 'POST'])

@app.route('/index', methods=['GET', 'POST'])

@login_required

def index():

 # ...

 posts = current_user.followed_posts().all()

 return render_template("index.html", title='Home Page', form=form,

 posts=posts)

The followed_posts method of the User class returns a SQLAlchemy
query object that is configured to grab the posts the user is interested
in from the database. Calling all() on this query triggers its
execution, with the return value being a list with all the results. So I
end up with a structure that is very much alike the one with fake posts
that I have been using until now. It’s so close that the template does
not even need to change.

9.3 Making It Easier to Find
Users to Follow
As I’m sure you noticed, the application as it is does not do a great job
at letting users find other users to follow. In fact, there is actually no
way to see what other users are there at all. I’m going to address that
with a few simple changes.

I’m going to create a new page that I’m going to call the “Explore”
page. This page will work like the home page, but instead of only
showing posts from followed users, it will show a global post stream
from all users. Here is the new explore view function:

Listing 9.5: app/routes.py: Explore view function.

@app.route('/explore')

@login_required

def explore():

 posts = Post.query.order_by(Post.timestamp.desc()).all()

 return render_template('index.html', title='Explore', posts=posts)

Did you notice something odd in this view function? The
render_template() call references the index.html template, which I’m
using in the main page of the application. Since this page is going to
be very similar to the main page, I decided to reuse the template. But
one difference with the main page is that in the explore page I do not
want to have a form to write blog posts, so in this view function I did
not include the form argument in the template call.

To prevent the index.html template from crashing when it tries to
render a web form that does not exist, I’m going to add a conditional
that only renders the form if it is defined:

Listing 9.6: app/templates/index.html: Make the blog post

submission form optional.

{% extends "base.html" %}

{% block content %}

 <h1>Hi, {{ current_user.username }}!</h1>

 {% if form %}

 <form action="" method="post">

 ...

 </form>

 {% endif %}

 ...

{% endblock %}

I’m also going to add a link to this new page in the navigation bar:

Listing 9.7: app/templates/base.html: Link to explore page in
navigation bar.

 Explore

Remember the _post.html sub-template that I have introduced in
Chapter 6 to render blog posts in the user profile page? This was a
small template that was included from the user profile page template,
and was separate so that it can also be used from other templates. I’m
now going to make a small improvement to it, which is to show the
username of the blog post author as a link:

Listing 9.8: app/templates/_post.html: Show link to author in blog
posts.

 <table>

 <tr valign="top">

 <td></td>

 <td>

 {{ post.author.username }}

 says:
{{ post.body }}

 </td>

 </tr>

 </table>

I can now use this sub-template to render blog posts in the home and
explore pages:

Listing 9.9: app/templates/index.html: Use blog post sub-
template.

 ...

 {% for post in posts %}

 {% include '_post.html' %}

 {% endfor %}

 ...

The sub-template expects a variable named post to exist, and that is
how the loop variable in the index template is named, so that works
perfectly.

With these small changes, the usability of the application has
improved considerably. Now a user can visit the explore page to read
blog posts from unknown users and based on those posts find new
users to follow, which can be done by simply clicking on a username to
access the profile page. Amazing, right?

At this point I suggest you try the application once again, so that you
experience these last user interface improvements.

9.4 Pagination of Blog Posts
The application is looking better than ever, but showing all of the
followed posts in the home page is going to become a problem sooner
rather than later. What happens if a user has a thousand followed
posts? Or a million? As you can imagine, managing such a large list of
posts will be extremely slow and inefficient.

To address that problem, I’m going to paginate the post list. This
means that initially I’m going to show just a limited number of posts at
a time, and include links to navigate through the entire list of posts.
Flask-SQLAlchemy supports pagination natively with the paginate()
query method. If for example, I want to get the first twenty followed
posts of the user, I can replace the all() call that terminates the query
with:

>>> user.followed_posts().paginate(1, 20, False).items

The paginate method can be called on any query object from Flask-
SQLAlchemy. It takes three arguments:

the page number, starting from 1
the number of items per page
an error flag. If True, when an out of range page is requested a
404 error will be automatically returned to the client. If False, an
empty list will be returned for out of range pages.

The return value from paginate is a Pagination object. The items
attribute of this object contains the list of items in the requested page.
There are other useful things in the Pagination object that I will
discuss later.

Now let’s think about how I can implement pagination in the index()

view function. I can start by adding a configuration item to the
application that determines how many items will be displayed per
page.

Listing 9.10: config.py: Posts per page configuration.

class Config(object):

 # ...

 POSTS_PER_PAGE = 3

It is a good idea to have these application-wide “knobs” that can
change behaviors in the configuration file, because then I can go to a
single place to make adjustments. In the final application I will of
course use a larger number than three items per page, but for testing it
is useful to work with small numbers.

Next, I need to decide how the page number is going to be
incorporated into application URLs. A fairly common way is to use a
query string argument to specify an optional page number, defaulting
to page 1 if it is not given. Here are some example URLs that show
how I’m going to implement this:

Page 1, implicit: http://localhost:5000/index
Page 1, explicit: http://localhost:5000/index?page=1
Page 3: http://localhost:5000/index?page=3

To access arguments given in the query string, I can use the Flask’s
request.args object. You have seen this already in Chapter 5, where I
implemented user login URLs from Flask-Login that can include a
next query string argument.

Below you can see how I added pagination to the home and explore
view functions:

Listing 9.11: app/routes.py: Followers association table

@app.route('/', methods=['GET', 'POST'])

@app.route('/index', methods=['GET', 'POST'])

@login_required

def index():

 # ...

 page = request.args.get('page', 1, type=int)

 posts = current_user.followed_posts().paginate(

 page, app.config['POSTS_PER_PAGE'], False)

 return render_template('index.html', title='Home', form=form,

 posts=posts.items)

@app.route('/explore')

@login_required

def explore():

 page = request.args.get('page', 1, type=int)

 posts = Post.query.order_by(Post.timestamp.desc()).paginate(

 page, app.config['POSTS_PER_PAGE'], False)

 return render_template("index.html", title='Explore', posts=posts.items)

With these changes, the two routes determine the page number to
display, either from the page query string argument or a default of 1,
and then use the paginate() method to retrieve only the desired page
of results. The POSTS_PER_PAGE configuration item that determines the
page size is accessed through the app.config object.

Note how easy these changes are, and how little code is affected each
time a change is made. I am trying to write each part of the
application without making any assumptions about how the other
parts work, and this enables me to write modular and robust
applications that are easier to extend and to test, and are less likely to
fail or have bugs.

Go ahead and try the pagination support. First make sure you have
more than three blog posts. This is easier to see in the explore page,
which shows posts from all users. You are now going to see just the
three most recent posts. If you want to see the next three, type
http://localhost:5000/explore?page=2 in your browser’s address bar.

9.5 Page Navigation
The next change is to add links at the bottom of the blog post list that
allow users to navigate to the next and/or previous pages. Remember
that I mentioned that the return value from a paginate() call is an
object of a Pagination class from Flask-SQLAlchemy? So far, I have
used the items attribute of this object, which contains the list of items
retrieved for the selected page. But this object has a few other
attributes that are useful when building pagination links:

has_next: True if there is at least one more page after the current
one
has_prev: True if there is at least one more page before the current
one
next_num: page number for the next page
prev_num: page number for the previous page

With these four elements, I can generate next and previous page links
and pass them down to the templates for rendering:

Listing 9.12: app/routes.py: Next and previous page links.

@app.route('/', methods=['GET', 'POST'])

@app.route('/index', methods=['GET', 'POST'])

@login_required

def index():

 # ...

 page = request.args.get('page', 1, type=int)

 posts = current_user.followed_posts().paginate(

 page, app.config['POSTS_PER_PAGE'], False)

 next_url = url_for('index', page=posts.next_num) \

 if posts.has_next else None

 prev_url = url_for('index', page=posts.prev_num) \

 if posts.has_prev else None

 return render_template('index.html', title='Home', form=form,

 posts=posts.items, next_url=next_url,

 prev_url=prev_url)

 @app.route('/explore')

 @login_required

 def explore():

 page = request.args.get('page', 1, type=int)

 posts = Post.query.order_by(Post.timestamp.desc()).paginate(

 page, app.config['POSTS_PER_PAGE'], False)

 next_url = url_for('explore', page=posts.next_num) \

 if posts.has_next else None

 prev_url = url_for('explore', page=posts.prev_num) \

 if posts.has_prev else None

 return render_template("index.html", title='Explore', posts=posts.items,

 next_url=next_url, prev_url=prev_url)

The next_url and prev_url in these two view functions are going to be
set to a URL returned by url_for() only if there is a page in that
direction. If the current page is at one of the ends of the collection of
posts, then the has_next or has_prev attributes of the Pagination object
will be False, and in that case the link in that direction will be set to
None.

One interesting aspect of the url_for() function that I haven’t
discussed before is that you can add any keyword arguments to it, and
if the names of those arguments are not referenced in the URL
directly, then Flask will include them in the URL as query arguments.

The pagination links are being set to the index.html template, so now
let’s render them on the page, right below the post list:

Listing 9.13: app/templates/index.html: Render pagination links
on the template.

 ...

 {% for post in posts %}

 {% include '_post.html' %}

 {% endfor %}

 {% if prev_url %}

 Newer posts

 {% endif %}

 {% if next_url %}

 Older posts

 {% endif %}

 ...

This change adds two links below the post list on both the index and
explore pages. The first link is labeled “Newer posts”, and it points to
the previous page (keep in mind I’m showing posts sorted by newest

first, so the first page is the one with the newest content). The second
link is labeled “Older posts” and points to the next page of posts. If
any of these two links is None, then it is omitted from the page, through
a conditional.

9.6 Pagination in the User
Profile Page
The changes for the index page are sufficient for now. However, there
is also a list of posts in the user profile page, which shows only posts
from the owner of the profile. To be consistent, the user profile page
should be changed to match the pagination style of the index page.

I begin by updating the user profile view function, which still had a list
of fake post objects in it.

Listing 9.14: app/routes.py: Pagination in the user profile view
function.

@app.route('/user/<username>')

@login_required

def user(username):

 user = User.query.filter_by(username=username).first_or_404()

 page = request.args.get('page', 1, type=int)

 posts = user.posts.order_by(Post.timestamp.desc()).paginate(

 page, app.config['POSTS_PER_PAGE'], False)

 next_url = url_for('user', username=user.username, page=posts.next_num) \

 if posts.has_next else None

 prev_url = url_for('user', username=user.username, page=posts.prev_num) \

 if posts.has_prev else None

 form = EmptyForm()

 return render_template('user.html', user=user, posts=posts.items,

 next_url=next_url, prev_url=prev_url, form=form)

To get the list of posts from the user, I take advantage of the fact that
the user.posts relationship is a query that is already set up by
SQLAlchemy as a result of the db.relationship() definition in the User
model. I take this query and add a order_by() clause so that I get the
newest posts first, and then do the pagination exactly like I did for the
posts in the index and explore pages. Note that the pagination links
that are generated by the url_for() function need the extra username
argument, because they are pointing back at the user profile page,

which has this username as a dynamic component of the URL.

Finally, the changes to the user.html template are identical to those I
made on the index page:

Listing 9.15: app/templates/user.html: Pagination links in the user
profile template.

 ...

 {% for post in posts %}

 {% include '_post.html' %}

 {% endfor %}

 {% if prev_url %}

 Newer posts

 {% endif %}

 {% if next_url %}

 Older posts

 {% endif %}

After you are done experiment with the pagination feature, you can set
the POSTS_PER_PAGE configuration item to a more reasonable value:

Listing 9.16: config.py: Posts per page configuration.

class Config(object):

 # ...

 POSTS_PER_PAGE = 25

Chapter 10

Email Support
The application is doing pretty well on the database front now, so in
this chapter I want to depart from that topic and add another
important piece that most web applications need, which is the sending
of emails.

Why does an application need to email its users? There are many
reasons, but one common one is to solve authentication related
problems. In this chapter I’m going to add a password reset feature
for users that forget their password. When a user requests a password
reset, the application will send an email with a specially crafted link.
The user then needs to click that link to have access to a form in which
to set a new password.

The GitHub links for this chapter are: Browse, Zip, Diff.

https://github.com/miguelgrinberg/microblog/tree/v0.10
https://github.com/miguelgrinberg/microblog/archive/v0.10.zip
https://github.com/miguelgrinberg/microblog/compare/v0.9...v0.10

10.1 Introduction to Flask-
Mail
As far as the actual sending of emails, Flask has a popular extension
called Flask-Mail that can make the task very easy. As always, this
extension is installed with pip:

(venv) $ pip install flask-mail

The password reset links will have a secure token in them. To generate
these tokens, I’m going to use JSON Web Tokens, which also have a
popular Python package:

(venv) $ pip install pyjwt

The Flask-Mail extension is configured from the app.config object.
Remember when in Chapter 7 I added the email configuration for
sending yourself an email whenever an error occurred in production?
I did not tell you this then, but my choice of configuration variables
was modeled after Flask-Mail’s requirements, so there isn’t really any
additional work that is needed, the configuration variables are already
in the application.

Like most Flask extensions, you need to create an instance right after
the Flask application is created. In this case this is an object of class
Mail:

Listing 10.1: app/__init__.py: Flask-Mail instance.

...

from flask_mail import Mail

app = Flask(__name__)

...

mail = Mail(app)

https://pythonhosted.org/Flask-Mail/
https://jwt.io

If you are planning to test sending of emails you have the same two
options I mentioned in Chapter 7. If you want to use an emulated
email server, Python provides one that is very handy that you can start
in a second terminal with the following command:

(venv) $ python -m smtpd -n -c DebuggingServer localhost:8025

To configure for this server you will need to set two environment
variables:

(venv) $ export MAIL_SERVER=localhost

(venv) $ export MAIL_PORT=8025

If you prefer to have emails sent for real, you need to use a real email
server. If you have one, then you just need to set the MAIL_SERVER,
MAIL_PORT, MAIL_USE_TLS, MAIL_USERNAME and MAIL_PASSWORD
environment variables for it. If you want a quick solution, you can use
a Gmail account to send email, with the following settings:

(venv) $ export MAIL_SERVER=smtp.googlemail.com

(venv) $ export MAIL_PORT=587

(venv) $ export MAIL_USE_TLS=1

(venv) $ export MAIL_USERNAME=<your-gmail-username>

(venv) $ export MAIL_PASSWORD=<your-gmail-password>

If you are using Microsoft Windows, you need to replace export with
set in each of the export statements above.

Remember that the security features in your Gmail account may
prevent the application from sending emails through it unless you
explicitly allow “less secure apps” access to your Gmail account. You
can read about this here, and if you are concerned about the security of
your account, you can create a secondary account that you configure
just for testing emails, or you can enable less secure apps only
temporarily to run your tests and then revert back to the more secure
default.

https://support.google.com/accounts/answer/6010255?hl=en

10.2 Flask-Mail Usage
To learn how Flask-Mail works, I’ll show you how to send an email
from a Python shell. So fire up Python with flask shell, and then run
the following commands:

>>> from flask_mail import Message

>>> from app import mail

>>> msg = Message('test subject', sender=app.config['ADMINS'][0],

... recipients=['your-email@example.com'])

>>> msg.body = 'text body'

>>> msg.html = '<h1>HTML body</h1>'

>>> mail.send(msg)

The snippet of code above will send an email to a list of email
addresses that you put in the recipients argument. I put the sender as
the first configured admin (I’ve added the ADMINS configuration
variable in Chapter 7). The email will have plain text and HTML
versions, so depending on how your email client is configured you may
see one or the other.

So as you see, this is pretty simple. Now let’s integrate emails into the
application.

10.3 A Simple Email
Framework
I will begin by writing a helper function that sends an email, which is
basically a generic version of the shell exercise from the previous
section. I will put this function in a new module called app/email.py:

Listing 10.2: app/email.py: Email sending wrapper function.

from flask_mail import Message

from app import mail

def send_email(subject, sender, recipients, text_body, html_body):

 msg = Message(subject, sender=sender, recipients=recipients)

 msg.body = text_body

 msg.html = html_body

 mail.send(msg)

Flask-Mail supports some features that I’m not utilizing here such as
Cc and Bcc lists. Be sure to check the Flask-Mail Documentation if you
are interested in those options.

https://pythonhosted.org/Flask-Mail/

10.4 Requesting a Password
Reset
As I mentioned above, I want users to have the option to request their
password to be reset. For this purpose I’m going to add a link in the
login page:

Listing 10.3: app/templates/login.html: Password reset link in
login form.

 <p>

 Forgot Your Password?

 Click to Reset It

 </p>

When the user clicks the link, a new web form will appear that
requests the user’s email address as a way to initiate the password
reset process. Here is the form class:

Listing 10.4: app/forms.py: Reset password request form.

class ResetPasswordRequestForm(FlaskForm):

 email = StringField('Email', validators=[DataRequired(), Email()])

 submit = SubmitField('Request Password Reset')

And here is the corresponding HTML template:

Listing 10.5: app/templates/reset_password_request.html: Reset
password request template.

{% extends "base.html" %}

{% block content %}

 <h1>Reset Password</h1>

 <form action="" method="post">

 {{ form.hidden_tag() }}

 <p>

 {{ form.email.label }}

 {{ form.email(size=64) }}

 {% for error in form.email.errors %}

 [{{ error }}]

 {% endfor %}

 </p>

 <p>{{ form.submit() }}</p>

 </form>

{% endblock %}

I also need a view function to handle this form:

Listing 10.6: app/routes.py: Reset password request view function.

from app.forms import ResetPasswordRequestForm

from app.email import send_password_reset_email

@app.route('/reset_password_request', methods=['GET', 'POST'])

def reset_password_request():

 if current_user.is_authenticated:

 return redirect(url_for('index'))

 form = ResetPasswordRequestForm()

 if form.validate_on_submit():

 user = User.query.filter_by(email=form.email.data).first()

 if user:

 send_password_reset_email(user)

 flash('Check your email for the instructions to reset your password')

 return redirect(url_for('login'))

 return render_template('reset_password_request.html',

 title='Reset Password', form=form)

This view function is fairly similar to others that process a form. I
start by making sure the user is not logged in. If the user is logged in,
then there is no point in using the password reset functionality, so I
redirect to the index page.

When the form is submitted and valid, I look up the user by the email
provided by the user in the form. If I find the user, I send a password
reset email. The send_password_reset_email() helper function
performs this task. I will show you this function below.

After the email is sent, I flash a message directing the user to look for
the email for further instructions, and then redirect back to the login
page. You may notice that the flashed message is displayed even if the
email provided by the user is unknown. This is so that clients cannot
use this form to figure out if a given user is a member or not.

10.5 Password Reset Tokens
Before I implement the send_password_reset_email() function, I need
to have a way to generate a password request link. This is going to be
the link that is sent to the user via email. When the link is clicked, a
page where a new password can be set is presented to the user. The
tricky part of this plan is to make sure that only valid reset links can be
used to reset an account’s password.

The links are going to be provisioned with a token, and this token will
be validated before allowing the password change, as proof that the
user that requested the email has access to the email address on the
account. A very popular token standard for this type of process is the
JSON Web Token, or JWT. The nice thing about JWTs is that they are
self contained. You can send a token to a user in an email, and when
the user clicks the link that feeds the token back into the application, it
can be verified on its own.

How do JWTs work? Nothing better than a quick Python shell session
to understand them:

>>> import jwt

>>> token = jwt.encode({'a': 'b'}, 'my-secret', algorithm='HS256')

>>> token

b'eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJhIjoiYiJ9.dvOo58OBDHiuSHD4uW88nfJik_sfUHq1mDi4G0'

>>> jwt.decode(token, 'my-secret', algorithms=['HS256'])

{'a': 'b'}

The {’a’: ’b’} dictionary is an example payload that is going to be
written into the token. To make the token secure, a secret key needs to
be provided to be used in creating a cryptographic signature. For this
example I have used the string ’my-secret’, but with the application
I’m going to use the SECRET_KEY from the configuration. The algorithm
argument specifies how the token is to be generated. The HS256
algorithm is the most widely used.

As you can see the resulting token is a long sequence of characters.
But do not think that this is an encrypted token. The contents of the
token, including the payload, can be decoded easily by anyone (don’t
believe me? Copy the above token and then enter it in the JWT
debugger to see its contents). What makes the token secure is that the
payload is signed. If somebody tried to forge or tamper with the
payload in a token, then the signature would be invalidated, and to
generate a new signature the secret key is needed. When a token is
verified, the contents of the payload are decoded and returned back to
the caller. If the token’s signature was validated, then the payload can
be trusted as authentic.

The payload that I’m going to use for the password reset tokens is
going to have the format {’reset_password’: user_id, ’exp’:
token_expiration}. The exp field is standard for JWTs and if present it
indicates an expiration time for the token. If a token has a valid
signature, but it is past its expiration timestamp, then it will also be
considered invalid. For the password reset feature, I’m going to give
these tokens 10 minutes of life.

When the user clicks on the emailed link, the token is going to be sent
back to the application as part of the URL, and the first thing the view
function that handles this URL will do is to verify it. If the signature is
valid, then the user can be identified by the ID stored in the payload.
Once the user’s identity is known, the application can ask for a new
password and set it on the user’s account.

Since these tokens belong to users, I’m going to write the token
generation and verification functions as methods in the User model:

Listing 10.7: app/models.py: Reset password token methods.

from time import time

import jwt

from app import app

class User(UserMixin, db.Model):

 # ...

 def get_reset_password_token(self, expires_in=600):

 return jwt.encode(

 {'reset_password': self.id, 'exp': time() + expires_in},

https://jwt.io/#debugger-io

 app.config['SECRET_KEY'], algorithm='HS256').decode('utf-8')

 @staticmethod

 def verify_reset_password_token(token):

 try:

 id = jwt.decode(token, app.config['SECRET_KEY'],

 algorithms=['HS256'])['reset_password']

 except:

 return

 return User.query.get(id)

The get_reset_password_token() function generates a JWT token as a
string. Note that the decode(’utf-8’) is necessary because the
jwt.encode() function returns the token as a byte sequence, but in the
application it is more convenient to have the token as a string.

The verify_reset_password_token() is a static method, which means
that it can be invoked directly from the class. A static method is
similar to a class method, with the only difference that static methods
do not receive the class as a first argument. This method takes a token
and attempts to decode it by invoking PyJWT’s jwt.decode() function.
If the token cannot be validated or is expired, an exception will be
raised, and in that case I catch it to prevent the error, and then return
None to the caller. If the token is valid, then the value of the
reset_password key from the token’s payload is the ID of the user, so I
can load the user and return it.

10.6 Sending a Password
Reset Email
The send_password_reset_email() function relies on the send_email()
function I wrote above to generate the password reset emails.

Listing 10.8: app/email.py: Send password reset email function.

from flask import render_template

from app import app

...

def send_password_reset_email(user):

 token = user.get_reset_password_token()

 send_email('[Microblog] Reset Your Password',

 sender=app.config['ADMINS'][0],

 recipients=[user.email],

 text_body=render_template('email/reset_password.txt',

 user=user, token=token),

 html_body=render_template('email/reset_password.html',

 user=user, token=token))

The interesting part in this function is that the text and HTML content
for the emails is generated from templates using the familiar
render_template() function. The templates receive the user and the
token as arguments, so that a personalized email message can be
generated. Here is the text template for the reset password email:

Listing 10.9: app/templates/email/reset_password.txt: Text for
password reset email.

Dear {{ user.username }},

To reset your password click on the following link:

{{ url_for('reset_password', token=token, _external=True) }}

If you have not requested a password reset simply ignore this message.

Sincerely,

The Microblog Team

And here is the nicer HTML version of the same email:

Listing 10.10: app/templates/email/reset_password.html: HTML
for password reset email.

<p>Dear {{ user.username }},</p>

<p>

 To reset your password

 click here

 .

</p>

<p>Alternatively, you can paste the following link in your browser's address bar:</p>

<p>{{ url_for('reset_password', token=token, _external=True) }}</p>

<p>If you have not requested a password reset simply ignore this message.</p>

<p>Sincerely,</p>

<p>The Microblog Team</p>

The reset_password route that is referenced in the url_for() call in
these two email templates does not exist yet, this will be added in the
next section. The _external=True argument that I included in the
url_for() calls in both templates is also new. The URLs that are
generated by url_for() by default are relative URLs that only include
the path portion of the URL. This is normally sufficient for links that
are generated in web pages, because the web browser completes the
URL by taking the missing parts from the URL in the address bar.
When sending a URL by email however, that context does not exist, so
fully qualified URLs need to be used. When _external=True is passed
as an argument, complete URLs are generated, so the previous
example would return http://localhost:5000/user/susan, or the
appropriate URL when the application is deployed on a domain name.

10.7 Resetting a User
Password
When the user clicks on the email link, a second route associated with
this feature is triggered. Here is the password request view function:

Listing 10.11: app/routes.py: Password reset view function.

from app.forms import ResetPasswordForm

@app.route('/reset_password/<token>', methods=['GET', 'POST'])

def reset_password(token):

 if current_user.is_authenticated:

 return redirect(url_for('index'))

 user = User.verify_reset_password_token(token)

 if not user:

 return redirect(url_for('index'))

 form = ResetPasswordForm()

 if form.validate_on_submit():

 user.set_password(form.password.data)

 db.session.commit()

 flash('Your password has been reset.')

 return redirect(url_for('login'))

 return render_template('reset_password.html', form=form)

In this view function I first make sure the user is not logged in, and
then I determine who the user is by invoking the token verification
method in the User class. This method returns the user if the token is
valid, or None if not. If the token is invalid I redirect to the home page.

If the token is valid, then I present the user with a second form, in
which the new password is requested. This form is processed in a way
similar to previous forms, and as a result of a valid form submission, I
invoke the set_password() method of User to change the password,
and then redirect to the login page, where the user can now login.

Here is the ResetPasswordForm class:

Listing 10.12: app/forms.py: Password reset form.

class ResetPasswordForm(FlaskForm):

 password = PasswordField('Password', validators=[DataRequired()])

 password2 = PasswordField(

 'Repeat Password', validators=[DataRequired(), EqualTo('password')])

 submit = SubmitField('Request Password Reset')

And here is the corresponding HTML template:

Listing 10.13: app/templates/reset_password.html: Password
reset form template.

{% extends "base.html" %}

{% block content %}

 <h1>Reset Your Password</h1>

 <form action="" method="post">

 {{ form.hidden_tag() }}

 <p>

 {{ form.password.label }}

 {{ form.password(size=32) }}

 {% for error in form.password.errors %}

 [{{ error }}]

 {% endfor %}

 </p>

 <p>

 {{ form.password2.label }}

 {{ form.password2(size=32) }}

 {% for error in form.password2.errors %}

 [{{ error }}]

 {% endfor %}

 </p>

 <p>{{ form.submit() }}</p>

 </form>

{% endblock %}

The password reset feature is now complete, so make sure you try it.

10.8 Asynchronous Emails
If you are using the simulated email server that Python provides you
may not have noticed this, but sending an email slows the application
down considerably. All the interactions that need to happen when
sending an email make the task slow, it usually takes a few seconds to
get an email out, and maybe more if the email server of the addressee
is slow, or if there are multiple addressees.

What I really want is for the send_email() function to be
asynchronous. What does that mean? It means that when this
function is called, the task of sending the email is scheduled to happen
in the background, freeing the send_email() to return immediately so
that the application can continue running concurrently with the email
being sent.

Python has support for running asynchronous tasks, actually in more
than one way. The threading and multiprocessing modules can both
do this. Starting a background thread for email being sent is much less
resource intensive than starting a brand new process, so I’m going to
go with that approach:

Listing 10.14: app/email.py: Send emails asynchronously.

from threading import Thread

...

def send_async_email(app, msg):

 with app.app_context():

 mail.send(msg)

def send_email(subject, sender, recipients, text_body, html_body):

 msg = Message(subject, sender=sender, recipients=recipients)

 msg.body = text_body

 msg.html = html_body

 Thread(target=send_async_email, args=(app, msg)).start()

The send_async_email function now runs in a background thread,
invoked via the Thread class in the last line of send_email(). With this
change, the sending of the email will run in the thread, and when the
process completes the thread will end and clean itself up. If you have
configured a real email server, you will definitely notice a speed
improvement when you press the submit button on the password reset
request form.

You probably expected that only the msg argument would be sent to the
thread, but as you can see in the code, I’m also sending the application
instance. When working with threads there is an important design
aspect of Flask that needs to be kept in mind. Flask uses contexts to
avoid having to pass arguments across functions. I’m not going to go
into a lot of detail on this, but know that there are two types of
contexts, the application context and the request context. In most
cases, these contexts are automatically managed by the framework,
but when the application starts custom threads, contexts for those
threads may need to be manually created.

There are many extensions that require an application context to be in
place to work, because that allows them to find the Flask application
instance without it being passed as an argument. The reason many
extensions need to know the application instance is because they have
their configuration stored in the app.config object. This is exactly the
situation with Flask-Mail. The mail.send() method needs to access
the configuration values for the email server, and that can only be
done by knowing what the application is. The application context that
is created with the with app.app_context() call makes the application
instance accessible via the current_app variable from Flask.

Chapter 11

Facelift
You have been playing with my Microblog application for a while now,
so I’m sure you noticed that I haven’t spent too much time making it
look good, or better said, I haven’t spent any time on that. The
templates that I put together are pretty basic, with absolutely no
custom styling. It was useful for me to concentrate on the actual logic
of the application without having the distraction of also writing good
looking HTML and CSS.

But I’ve focused on the backend part of this application for a while
now. So in this chapter I’m taking a break from that and will spend
some time showing you what can be done to make the application look
a bit more polished and professional.

This chapter is going to be a bit different than previous ones, because
I’m not going to be as detailed as I normally am with the Python side,
which after all, is the main topic of this tutorial. Creating good looking
web pages is a vast topic that is largely unrelated to Python web
development, but I will discuss some basic guidelines and ideas on
how to approach the task, and you will also have the application with
the redesigned looks to study and learn from.

The GitHub links for this chapter are: Browse, Zip, Diff.

https://github.com/miguelgrinberg/microblog/tree/v0.11
https://github.com/miguelgrinberg/microblog/archive/v0.11.zip
https://github.com/miguelgrinberg/microblog/compare/v0.10...v0.11

11.1 CSS Frameworks
While we can argue that coding is hard, our pains are nothing
compared to those of web designers, who have to write templates that
have a nice and consistent look on a list of web browsers. It has gotten
better in recent years, but there are still obscure bugs or quirks in
some browsers that make the task of designing web pages that look
nice everywhere very hard. This is even harder if you also need to
target resource and screen limited browsers of tablets and
smartphones.

If you, like me, are a developer who just wants to create decent looking
web pages, but do not have the time or interest to learn the low level
mechanisms to achieve this effectively by writing raw HTML and CSS,
then the only practical solution is to use a CSS framework to simplify
the task. You will be losing some creative freedom by taking this path,
but on the other side, your web pages will look good in all browsers
without a lot of effort. A CSS framework provides a collection of high-
level CSS classes with pre-made styles for common types of user
interface elements. Most of these frameworks also provide JavaScript
add-ons for things that cannot be done strictly with HTML and CSS.

11.2 Introducing Bootstrap
One of the most popular CSS frameworks is Bootstrap, created by
Twitter. If you want to see the kind of pages that can be designed with
this framework, the documentation has some examples.

These are some of the benefits of using Bootstrap to style your web
pages:

Similar look in all major web browsers
Handling of desktop, tablet and phone screen sizes
Customizable layouts
Nicely styled navigation bars, forms, buttons, alerts, popups, etc.

The most direct way to use Bootstrap is to simply import the
bootstrap.min.css file in your base template. You can either download
a copy of this file and add it to your project, or import it directly from a
CDN. Then you can start using the general purpose CSS classes it
provides, according to the documentation, which is pretty good. You
may also want to import the bootstrap.min.js file containing the
framework’s JavaScript code, so that you can also use the most
advanced features.

Fortunately, there is a Flask extension called Flask-Bootstrap that
provides a ready to use base template that has the Bootstrap
framework installed. Let’s install this extension:

(venv) $ pip install flask-bootstrap

http://getbootstrap.com/
https://getbootstrap.com/docs/3.3/getting-started/#examples
https://en.wikipedia.org/wiki/Content_delivery_network
https://getbootstrap.com/docs/3.3/getting-started/
https://pythonhosted.org/Flask-Bootstrap/

11.3 Using Flask-Bootstrap
Flask-Bootstrap needs to be initialized like most other Flask
extensions:

Listing 11.1: app/__init__.py: Flask-Bootstrap instance.

...

from flask_bootstrap import Bootstrap

app = Flask(__name__)

...

bootstrap = Bootstrap(app)

With the extension initialized, a bootstrap/base.html template
becomes available, and can be referenced from application templates
with the extends clause.

But as you recall, I’m already using the extends clause with my own
base template, which allows me to have the common parts of the page
in a single place. My base.html template defined the navigation bar,
which included a few links, and also exported a content block . All
other templates in my application inherit from the base template and
provide the content block with the main content of the page.

So how can I fit the Bootstrap base template? The idea is to use a
three-level hierarchy instead of just two. The bootstrap/base.html
template provides the basic structure of the page, which includes the
Bootstrap framework files. This template exports a few blocks for
derived templates such as title, navbar and content (see the complete
list of blocks here). I’m going to change my base.html template to
derive from bootstrap/base.html and provide implementations for the
title, navbar and content blocks. In turn, base.html will export its
own app_content block for its derived templates to define the page
content.

https://pythonhosted.org/Flask-Bootstrap/basic-usage.html#available-blocks

Below you can see how the base.html looks after I modified it to
inherit from the Bootstrap base template. Note that this listing does
not include the entire HTML for the navigation bar, but you can see
the full implementation on GitHub or by downloading the code for this
chapter.

Listing 11.2: app/templates/base.html: Redesigned base template.

{% extends 'bootstrap/base.html' %}

{% block title %}

 {% if title %}{{ title }} - Microblog{% else %}Welcome to Microblog{% endif %}

{% endblock %}

{% block navbar %}

 <nav class="navbar navbar-default">

 ... navigation bar here (see complete code on GitHub) ...

 </nav>

{% endblock %}

{% block content %}

 <div class="container">

 {% with messages = get_flashed_messages() %}

 {% if messages %}

 {% for message in messages %}

 <div class="alert alert-info" role="alert">{{ message }}</div>

 {% endfor %}

 {% endif %}

 {% endwith %}

 {# application content needs to be provided in the app_content block #}

 {% block app_content %}{% endblock %}

 </div>

{% endblock %}

Here you can see how I make this template derive from
bootstrap/base.html, followed by the three blocks that implement the
page title, navigation bar and page content respectively.

The title block needs to define the text that will be used for the page
title, with the <title> tags. For this block I simply moved the logic
that was inside the <title> tag in the original base template.

The navbar block is an optional block that can be used to define a
navigation bar. For this block, I adapted the example in the Bootstrap
navigation bar documentation so that it includes a site branding on the
left end, followed by the Home and Explore links. I then added the

Profile and Login or Logout links aligned with the right border of the
page. As I mentioned above, I omitted the HTML in the example
above, but you can obtain the full base.html template from the
download package for this chapter.

Finally, in the content block I’m defining a top-level container, and
inside it I have the logic that renders flashed messages, which are now
going to appear styled as Bootstrap alerts. That is followed with a new
app_content block that is defined just so that derived templates can
define their own content.

The original version of all the page templates defined their content in a
block named content. As you saw above, the block named content is
used by Flask-Bootstrap, so I renamed my content block as
app_content. So all my templates have to be renamed to use
app_content as their content block. As an example, here how the
modified version of the 404.html template looks like:

Listing 11.3: app/templates/404.html: Redesigned 404 error
template.

{% extends "base.html" %}

{% block app_content %}

 <h1>File Not Found</h1>

 <p>Back</p>

{% endblock %}

11.4 Rendering Bootstrap
Forms
An area where Flask-Bootstrap does a fantastic job is in rendering of
forms. Instead of having to style the form fields one by one, Flask-
Bootstrap comes with a macro that accepts a Flask-WTF form object
as an argument and renders the complete form using Bootstrap styles.

Below you can see the redesigned register.html template as an
example:

Listing 11.4: app/templates/register.html: User registration
template.

{% extends "base.html" %}

{% import 'bootstrap/wtf.html' as wtf %}

{% block app_content %}

 <h1>Register</h1>

 <div class="row">

 <div class="col-md-4">

 {{ wtf.quick_form(form) }}

 </div>

 </div>

{% endblock %}

Isn’t this great? The import statement near the top works similarly to a
Python import on the template side. That adds a wtf.quick_form()
macro that in a single line of code renders the complete form,
including support for display validation errors, and all styled as
appropriate for the Bootstrap framework.

Once again, I’m not going to show you all the changes that I’ve done
for the other forms in the application, but these changes are all made
in the code that you can download or inspect on GitHub.

11.5 Rendering of Blog Posts
The presentation logic that renders a single blog posts was abstracted
into a sub-template called _post.html. All I need to do with this
template is make some minor adjustments so that it looks good under
Bootstrap.

Listing 11.5: app/templates/_post.html: Redesigned post sub-
template.

 <table class="table table-hover">

 <tr>

 <td width="70px">

 </td>

 <td>

 {{ post.author.username }}

 says:

 {{ post.body }}

 </td>

 </tr>

 </table>

11.6 Rendering Pagination
Links
Pagination links is another area where Bootstrap provides direct
support. For this I just went one more time to the Bootstrap
documentation and adapted one of their examples. Here is how these
look in the index.html page:

Listing 11.6: app/templates/index.html: Redesigned pagination
links.

 ...

 <nav aria-label="...">

 <ul class="pager">

 <li class="previous{% if not prev_url %} disabled{% endif %}">

 ← Newer posts

 <li class="next{% if not next_url %} disabled{% endif %}">

 Older posts →

 </nav>

Note that in this implementation, instead of hiding the next or
previous link when that direction does not have any more content, I’m
applying a disabled state, which will make the link appear grayed out.

I’m not going to show it here, but a similar change needs to be applied
to user.html. The download package for this chapter includes these
changes.

https://getbootstrap.com/docs/3.3/components/#optional-disabled-state

11.7 Before And After
To update your application with these changes, please download the
zip file for this chapter and update your templates accordingly.

Below you can see a few before and after pictures to see the
transformation. Keep in mind that this change was achieved without
changing a single line of application logic!

Chapter 12

Dates and Times
One of the aspects of my Microblog application that I have ignored for
a long time is the display of dates and times. Until now, I’ve just let
Python render the datetime object in the User model, and have
completely ignored the one in the Post model.

The GitHub links for this chapter are: Browse, Zip, Diff.

https://github.com/miguelgrinberg/microblog/tree/v0.12
https://github.com/miguelgrinberg/microblog/archive/v0.12.zip
https://github.com/miguelgrinberg/microblog/compare/v0.11...v0.12

12.1 Timezone Hell
Using Python on the server to render dates and times that are
presented to users on their web browsers is really not a good idea.
Consider the following example. I’m writing this at 4:06PM on
September 28th, 2017. My timezone at the time I’m writing this is
PDT (or UTC-7 if you prefer). Running in a Python interpreter I get
the following:

>>> from datetime import datetime

>>> str(datetime.now())

'2017-09-28 16:06:30.439388'

>>> str(datetime.utcnow())

'2017-09-28 23:06:51.406499'

The now() call returns the correct time for my location, while the
utcnow() call returns the time in the UTC time zone. If I could ask
many people living in different parts of the world to run the above
code all at that same time with me, the now() function will return
different results for each person, but utcnow() will always return the
same time, regardless of location. So which one do you think is better
to use in a web application that will very likely have users located all
over the world?

It is pretty clear that the server must manage times that are consistent
and independent of location. If this application grows to the point of
needing several production servers in different regions around the
world, I would not want each server to write timestamps to the
database in different timezones, because that would make working
with these times impossible. Since UTC is the most used uniform
timezone and is supported in the datetime class, that is what I’m going
to use.

But there is an important problem with this approach. For users in
different timezones, it will be awfully difficult to figure out when a post

was made if they see times in the UTC timezone. They would need to
know in advance that the times are in UTC so that they can mentally
adjust the times to their own timezone. Imagine a user in the PDT
timezone that posts something at 3:00pm, and immediately sees that
the post appears with a 10:00pm UTC time, or to be more exact
22:00. That is going to be very confusing.

While standardizing the timestamps to UTC makes a lot of sense from
the server’s perspective, this creates a usability problem for users. The
goal of this chapter is to address this problem while keeping all the
timestamps managed in the server in UTC.

12.2 Timezone Conversions
The obvious solution to the problem is to convert all timestamps from
the stored UTC units to the local time of each user. This allows the
server to continue using UTC for consistency, while an on-the-fly
conversion tailored to each user solves the usability problem. The
tricky part of this solution is to know the location of each user.

Many websites have a configuration page where users can specify their
timezone. This would require me to add a new page with a form in
which I present users with a dropdown with the list of timezones.
Users can be asked to enter their timezone when they access the site
for the first time, as part of their registration.

While this is a decent solution that solves the problem, it is a bit odd to
ask users to enter a piece of information that they have already
configured in their operating system. It seems it would be more
efficient if I could just grab the timezone setting from their computers.

As it turns out, the web browser knows the user’s timezone, and
exposes it through the standard date and time JavaScript APIs. There
are actually two ways to take advantage of the timezone information
available via JavaScript:

The “old school” approach would be to have the web browser
somehow send the timezone information to the server when the
user first logs on to the application. This could be done with an
Ajax call, or much more simply with a meta refresh tag. Once the
server knows the timezone it can keep it in the user’s session or
write it to the user’s entry in the database, and from then on
adjust all timestamps with it at the time templates are rendered.
The “new school” approach would be to not change a thing in the
server, and let the conversion from UTC to local timezone happen
in the client, using JavaScript.

http://en.wikipedia.org/wiki/Ajax_(programming)
http://en.wikipedia.org/wiki/Meta_refresh

Both options are valid, but the second one has a big advantage.
Knowing the timezone of the user isn’t always enough to present dates
and times in the format expected by the user. The browser has also
access to the system locale configuration, which specifies things like
AM/PM vs. 24 hour clock, DD/MM/YYYY vs. MM/DD/YYYY and
many other cultural or regional styles.

And if that isn’t enough, there is yet one more advantage for the new
school approach. There is an open-source library that does all this
work!

12.3 Introducing Moment.js
and Flask-Moment
Moment.js is a small open-source JavaScript library that takes date
and time rendering to another level, as it provides every imaginable
formatting option, and then some. And a while ago I created Flask-
Moment, a small Flask extension that makes it very easy to
incorporate moment.js into your application.

So let’s start by installing Flask-Moment:

(venv) $ pip install flask-moment

This extension is added to a Flask application in the usual way:

Listing 12.1: app/__init__.py: Flask-Moment instance.

...

from flask_moment import Moment

app = Flask(__name__)

...

moment = Moment(app)

Unlike other extensions, Flask-Moment works together with
moment.js, so all templates of the application must include this
library. To ensure that this library is always available, I’m going to add
it in the base template. This can be done in two ways. The most direct
way is to explicitly add a <script> tag that imports the library, but
Flask-Moment makes it easier, by exposing a moment.include_moment()
function that generates the <script> tag:

Listing 12.2: app/templates/base.html: Including moment.js in the
base template.

http://momentjs.com

...

{% block scripts %}

 {{ super() }}

 {{ moment.include_moment() }}

{% endblock %}

The scripts block that I added here is another block exported by
Flask-Bootstrap’s base template. This is the place where JavaScript
imports are to be included. This block is different from previous ones
in that it already comes with some content defined in the base
template. All I want to do is add the moment.js library, without losing
the base contents. And this is achieved with the super() statement,
which preserves the content from the base template. If you define a
block in your template without using super(), then any content
defined for this block in the base template will be lost.

12.4 Using Moment.js
Moment.js makes a moment class available to the browser. The first
step to render a timestamp is to create an object of this class, passing
the desired timestamp in ISO 8601 format. Here is an example:

t = moment('2017-09-28T21:45:23Z')

If you are not familiar with the ISO 8601 standard format for dates
and times, the format is as follows:

{{ year }}-{{ month }}-{{ day }}T{{ hour }}:{{ minute }}:{{ second }}{{ timezone }}

I already decided that I was only going to work with UTC timezones, so
the last part is always going to be Z, which represents UTC in the ISO
8601 standard.

The moment object provides several methods for different rendering
options. Below are some of the most common options:

moment('2017-09-28T21:45:23Z').format('L')

"09/28/2017"

moment('2017-09-28T21:45:23Z').format('LL')

"September 28, 2017"

moment('2017-09-28T21:45:23Z').format('LLL')

"September 28, 2017 2:45 PM"

moment('2017-09-28T21:45:23Z').format('LLLL')

"Thursday, September 28, 2017 2:45 PM"

moment('2017-09-28T21:45:23Z').format('dddd')

"Thursday"

moment('2017-09-28T21:45:23Z').fromNow()

"7 hours ago"

moment('2017-09-28T21:45:23Z').calendar()

"Today at 2:45 PM"

This example creates a moment object initialized to September 28th
2017 at 9:45pm UTC. You can see that all the options I tried above are
rendered in UTC-7, which is the timezone configured on my
computer. You can enter the above commands in your browser’s

http://en.wikipedia.org/wiki/ISO_8601

console, making sure the page on which you open the console has
moment.js included. You can do it in microblog, as long as you made
the changes above to include moment.js, or also on
https://momentjs.com/.

Note how the different methods create different representations. With
format() you control the format of the output with a format string,
similar to the strftime function from Python. The fromNow() and
calendar() methods are interesting because they render the
timestamp in relation to the current time, so you get output such as “a
minute ago” or “in two hours”, etc.

If you were working directly in JavaScript, the above calls return a
string that has the rendered timestamp. Then it is up to you to insert
this text in the proper place on the page, which unfortunately requires
some JavaScript to work with the DOM. The Flask-Moment extension
greatly simplifies the use of moment.js by enabling a moment object
similar to the JavaScript one in your templates.

Let’s look at the timestamp that appears in the profile page. The
current user.html template lets Python generate a string
representation of the time. I can now render this timestamp using
Flask-Moment as follows:

Listing 12.3: app/templates/user.html: Render timestamp with
moment.js.

 {% if user.last_seen %}

 <p>Last seen on: {{ moment(user.last_seen).format('LLL') }}</p>

 {% endif %}

So as you can see, Flask-Moment uses a syntax that is similar to that of
the JavaScript library, with one difference being that the argument to
moment() is now a Python datetime object and not an ISO 8601 string.
The moment() call issued from a template also automatically generates
the required JavaScript code to insert the rendered timestamp in the
proper place of the DOM.

The second place where I can take advantage of Flask-Moment is in

https://docs.python.org/3.6/library/time.html#time.strftime
https://en.wikipedia.org/wiki/Document_Object_Model

the _post.html sub-template, which is invoked from the index and
user pages. In the current version of the template, each post preceded
with a “username says:” line. Now I can add a timestamp rendered
with fromNow():

Listing 12.4: app/templates/_post.html: Render timestamp in post
sub-template.

 {{ post.author.username }}

 said {{ moment(post.timestamp).fromNow() }}:

 {{ post.body }}

Below you can see how both these timestamps look when rendered
with Flask-Moment and moment.js:

Chapter 13

I18n and L10n
The topics of this chapter are Internationalization and Localization,
commonly abbreviated I18n and L10n. To make my application
friendly to people who do not speak English, I’m going to implement a
translation workflow that, with the help of language translators, will
allow me to offer the application to users in a choice of languages.

The GitHub links for this chapter are: Browse, Zip, Diff.

https://github.com/miguelgrinberg/microblog/tree/v0.13
https://github.com/miguelgrinberg/microblog/archive/v0.13.zip
https://github.com/miguelgrinberg/microblog/compare/v0.12...v0.13

13.1 Introduction to Flask-
Babel
As you can probably guess, there is a Flask extension that makes
working with translations very easy. The extension is called Flask-
Babel and is installed with pip:

(venv) $ pip install flask-babel

Flask-Babel is initialized like most other Flask extensions:

Listing 13.1: app/__init__.py: Flask-Babel instance.

...

from flask_babel import Babel

app = Flask(__name__)

...

babel = Babel(app)

As part of this chapter, I’m going to show you how to translate the
application into Spanish, as I happen to speak that language. I could
also work with translators that know other languages and support
those as well. To keep track of the list of supported languages, I’m
going to add a configuration variable:

Listing 13.2: config.py: Supported languages list.

class Config(object):

 # ...

 LANGUAGES = ['en', 'es']

I’m using two-letter language codes for this application, but if you
need to be more specific, a country code can be added as well. For
example, you could use en-US, en-GB and en-CA to support American,

https://pythonhosted.org/Flask-Babel/

British and Canadian English as different languages.

The Babel instance provides a localeselector decorator. The
decorated function is invoked for each request to select a language
translation to use for that request:

Listing 13.3: app/__init__.py: Select best language.

from flask import request

...

@babel.localeselector

def get_locale():

 return request.accept_languages.best_match(app.config['LANGUAGES'])

Here I’m using an attribute of Flask’s request object called
accept_languages. This object provides a high-level interface to work
with the Accept-Language header that clients send with a request.
This header specifies the client language and locale preferences as a
weighted list. The contents of this header can be configured in the
browser’s preferences page, with the default being usually imported
from the language settings in the computer’s operating system. Most
people don’t even know such a setting exists, but this is useful as users
can provide a list of preferred languages, each with a weight. In case
you are curious, here is an example of a complex Accept-Languages
header:

Accept-Language: da, en-gb;q=0.8, en;q=0.7

This says that Danish (da) is the preferred language (with default
weight = 1.0), followed by British English (en-GB) with a 0.8 weight,
and as a last option generic English (en) with a 0.7 weight.

To select the best language, you need to compare the list of languages
requested by the client against the languages the application supports,
and using the client provided weights, find the best language. The
logic to do this is somewhat complicated, but it is all encapsulated in
the best_match() method, which takes the list of languages offered by
the application as an argument and returns the best choice.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept-Language

13.2 Marking Texts to
Translate In Python Source
Code
Okay, so now comes the bad news. The normal workflow when
making an application available in multiple languages is to mark all
the texts that need translations in the source code. After the texts are
marked, Flask-Babel will scan all the files and extract those texts into a
separate translation file using the gettext tool. Unfortunately this is a
tedious task that needs to be done to enable translations.

I’m going to show you a few examples of this marking here, but you
can get the complete set of changes from the download package for
this chapter or the GitHub repository.

The way texts are marked for translation is by wrapping them in a
function call that as a convention is called _(), just an underscore. The
simplest cases are those where literal strings appear in the source
code. Here is an example flash() statement:

from flask_babel import _

...

flash(_('Your post is now live!'))

The idea is that the _() function wraps the text in the base language
(English in this case). This function will use the language selected by
the get_locale() function to find the correct translation for a given
client. The _() function then returns the translated text, which in this
case will become the argument to flash().

Unfortunately not all cases are that simple. Consider this other
flash() call from the application:

https://www.gnu.org/software/gettext/
https://github.com/miguelgrinberg/microblog/tree/v0.13

flash('User {} not found.'.format(username))

This text has a dynamic component that is inserted in the middle of
the static text. The _() function has a syntax that supports this type of
texts, but it is based on the older string substitution syntax:

flash(_('User %(username)s not found.', username=username))

There is an even harder case to handle. Some string literals are
assigned outside of a request, usually when the application is starting
up, so at the time these texts are evaluated there is no way to know
what language to use. An example of this is the labels associated with
form fields. The only solution to handle those texts is to find a way to
delay the evaluation of the string until it is used, which is going to be
under an actual request. Flask-Babel provides a lazy evaluation
version of _() that is called lazy_gettext():

from flask_babel import lazy_gettext as _l

class LoginForm(FlaskForm):

 username = StringField(_l('Username'), validators=[DataRequired()])

 # ...

Here I’m importing this alternative translation function and renaming
to to _l() so that it looks similar to the original _(). This new function
wraps the text in a special object that triggers the translation to be
performed later, when the string is used.

The Flask-Login extension flashes a message any time it redirects the
user to the login page. This message is in English and comes from the
extension itself. To make sure this message also gets translated, I’m
going to override the default message and provide my own, wrapper
with the _l() function for lazy processing:

login = LoginManager(app)

login.login_view = 'login'

login.login_message = _l('Please log in to access this page.')

13.3 Marking Texts to
Translate In Templates
In the previous section you’ve seen how to mark translatable texts in
Python source code, but that is only a part of this process, as template
files also have text. The _() function is also available in templates, so
the process is fairly similar. For example, consider this snippet of
HTML from 404.html:

<h1>File Not Found</h1>

The translation enabled version becomes:

<h1>{{ _('File Not Found') }}</h1>

Note that here in addition to wrapping the text with _(), the {{ ... }}
needs to be added, to force the _() to be evaluated instead of being
considered a literal in the template.

For more complex phrases that have dynamic components, arguments
can also be used:

<h1>{{ _('Hi, %(username)s!', username=current_user.username) }}</h1>

There is a particularly tricky case in _post.html that took me a while to
figure out:

 {% set user_link %}

 {{ post.author.username }}

 {% endset %}

 {{ _('%(username)s said %(when)s',

 username=user_link, when=moment(post.timestamp).fromNow()) }}

The problem here is that I wanted the username to be a link that points

to the profile page of the user, not just the name, so I had to create an
intermediate variable called user_link using the set and endset
template directives, and then pass that as an argument to the
translation function.

As I mentioned above, you can download a version of the application
with all the translatable texts in Python source code and templates
marked.

https://github.com/miguelgrinberg/microblog/tree/v0.13

13.4 Extracting Text to
Translate
Once you have the application with all the _() and _l() in place, you
can use the pybabel command to extract them to a .pot file, which
stands for portable object template. This is a text file that includes all
the texts that were marked as needing translation. The purpose of this
file is to serve as a template to create translation files for each
language.

The extraction process needs a small configuration file that tells
pybabel what files should be scanned for translatable texts. Below you
can see the babel.cfg that I created for this application:

Listing 13.4: babel.cfg: PyBabel configuration file.

[python: app/**.py]

[jinja2: app/templates/**.html]

extensions=jinja2.ext.autoescape,jinja2.ext.with_

The first two lines define the filename patterns for Python and Jinja2
template files respectively. The third line defines two extensions
provided by the Jinja2 template engine that help Flask-Babel properly
parse template files.

To extract all the texts to the .pot file, you can use the following
command:

(venv) $ pybabel extract -F babel.cfg -k _l -o messages.pot .

The pybabel extract command reads the configuration file given in
the -F option, then scans all the code and template files in the
directories that match the configured sources, starting from the

directory given in the command (the current directory or . in this
case). By default, pybabel will look for _() as a text marker, but I have
also used the lazy version, which I imported as _l(), so I need to tell
the tool to look for those too with the -k _l. The -o option provides
the name of the output file.

I should note that the messages.pot file is not a file that needs to be
incorporated into the project. This is a file that can be easily
regenerated any time it is needed, simply by running the command
above again. So there is no need to commit this file to source control.

13.5 Generating a Language
Catalog
The next step in the process is to create a translation for each language
that will be supported in addition to the base one, which in this case is
English. I said I was going to start by adding Spanish (language code
es), so this is the command that does that:

(venv) $ pybabel init -i messages.pot -d app/translations -l es

creating catalog app/translations/es/LC_MESSAGES/messages.po based on messages.pot

The pybabel init command takes the messages.pot file as input and
writes a new language catalog to the directory given in the -d option
for the language specified in the -l option. I’m going to be installing
all the translations in the app/translations directory, because that is
where Flask-Babel will expect translation files to be by default. The
command will create a es subdirectory inside this directory for the
Spanish data files. In particular, there will be a new file named
app/translations/es/LC_MESSAGES/messages.po, that is where the
translations need to be made.

If you want to support other languages, just repeat the above
command with each of the language codes you want, so that each
language gets its own repository with a messages.po file.

This messages.po file that created in each language repository uses a
format that is the de facto standard for language translations, the
format used by the gettext utility. Here are a few lines from the
beginning of the Spanish messages.po:

Spanish translations for PROJECT.

Copyright (C) 2017 ORGANIZATION

This file is distributed under the same license as the PROJECT project.

FIRST AUTHOR <EMAIL@ADDRESS>, 2017.

#

http://www.gnu.org/software/gettext/

msgid ""

msgstr ""

"Project-Id-Version: PROJECT VERSION\n"

"Report-Msgid-Bugs-To: EMAIL@ADDRESS\n"

"POT-Creation-Date: 2017-09-29 23:23-0700\n"

"PO-Revision-Date: 2017-09-29 23:25-0700\n"

"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"

"Language: es\n"

"Language-Team: es <LL@li.org>\n"

"Plural-Forms: nplurals=2; plural=(n != 1)\n"

"MIME-Version: 1.0\n"

"Content-Type: text/plain; charset=utf-8\n"

"Content-Transfer-Encoding: 8bit\n"

"Generated-By: Babel 2.5.1\n"

#: app/email.py:21

msgid "[Microblog] Reset Your Password"

msgstr ""

#: app/forms.py:12 app/forms.py:19 app/forms.py:50

msgid "Username"

msgstr ""

#: app/forms.py:13 app/forms.py:21 app/forms.py:43

msgid "Password"

msgstr ""

If you skip the header, you can see that what follows is a list of strings
that were extracted from the _() and _l() calls. For each text, you get
a reference to the location of the text in your application. Then the
msgid line contains the text in the base language, and the msgstr line
that follows contains an empty string. Those empty strings need to be
edited to have the version of the text in the target language.

There are many translation applications that work with .po files. If
you feel comfortable editing the text file, then that’s sufficient, but if
you are working with a large project it may be recommended to work
with a specialized editor. The most popular translation application is
the open-source poedit, which is available for all major operating
systems. If you are familiar with vim, then the po.vim plugin gives
some key mappings that make working with these files easier.

Below you can see a portion of the Spanish messages.po after I added
the translations:

#: app/email.py:21

msgid "[Microblog] Reset Your Password"

msgstr "[Microblog] Nueva Contraseña"

#: app/forms.py:12 app/forms.py:19 app/forms.py:50

http://www.poedit.net/
https://vim.sourceforge.io/scripts/script.php?script_id=695

msgid "Username"

msgstr "Nombre de usuario"

#: app/forms.py:13 app/forms.py:21 app/forms.py:43

msgid "Password"

msgstr "Contraseña"

The download package for this chapter also contains this file with all
the translations in place, so that you don’t have to worry about that
part for this application.

The messages.po file is a sort of source file for translations. When you
want to start using these translated texts, this file needs to be compiled
into a format that is efficient to be used by the application at run-time.
To compile all the translations for the application, you can use the
pybabel compile command as follows:

(venv) $ pybabel compile -d app/translations

compiling catalog app/translations/es/LC_MESSAGES/messages.po to

app/translations/es/LC_MESSAGES/messages.mo

This operation adds a messages.mo file next to messages.po in each
language repository. The .mo file is the file that Flask-Babel will use to
load translations for the application.

After you create the messages.mo file for Spanish or any other
languages you added to the project, these languages are ready to be
used in the application. If you want to see how the application looks in
Spanish, you can edit the language configuration in your web browser
to have Spanish as the preferred language. For Chrome, this is the
Advanced part of the Settings page:

https://github.com/miguelgrinberg/microblog/tree/v0.13

If you prefer not to change your browser settings, the other alternative
is to force a language by making the localeselector function always
return it. For Spanish, this would be how you would do it:

Listing 13.5: app/__init__.py: Select best language.

@babel.localeselector

def get_locale():

 # return request.accept_languages.best_match(app.config['LANGUAGES'])

 return 'es'

Running the application with the browser configured for Spanish, or
the localeselector function returning es will make all the texts appear
in Spanish when you use the application.

13.6 Updating the
Translations
One common situation when working with translations is that you
may want to start using a translation file even if it is incomplete. That
is totally fine, you can compile an incomplete messages.po file and any
translations that are available will be used, while any missing ones will
use the base language. You can then continue working on the
translations and compile again to update the messages.mo file as you
make progress.

Another common scenario occurs if you missed some texts when you
added the _() wrappers. In this case you are going to see that those
texts that you missed are going to remain in English, because Flask-
Babel knows nothing about them. In this situation you’ll want to add
the _() or _l() wrappers when you detect texts that don’t have them,
and then do an update procedure, which involves two steps:

(venv) $ pybabel extract -F babel.cfg -k _l -o messages.pot .

(venv) $ pybabel update -i messages.pot -d app/translations

The extract command is identical to the one I issued earlier, but now
it will generate a new version of messages.pot with all the previous
texts plus anything new that you recently wrapped with _() or _l().
The update call takes the new messages.pot file and merges it into all
the messages.po files associated with the project. This is going to be
an intelligent merge, in which any existing texts will be left alone,
while only entries that were added or removed in messages.pot will be
affected.

After the messages.po are updated, you can go ahead and translate
any new tests, then compile the messages one more time to make them
available to the application.

13.7 Translating Dates and
Times
Now I have a complete Spanish translation for all the texts in Python
code and templates, but if you run the application in Spanish and are a
good observer, you will notice that there are still a few things that
appear in English. I’m referring to the timestamps generated by Flask-
Moment and moment.js, which obviously have not been included in
the translation effort because none of the texts generated by these
packages are part of the source code or templates of the application.

The moment.js library does support localization and
internationalization, so all I need to do is configure the proper
language. Flask-Babel returns the selected language and locale for a
given request via the get_locale() function, so what I’m going to do is
add the locale to the g object, so that I can then access it from the base
template:

Listing 13.6: app/routes.py: Store selected language in flask.g.

...

from flask import g

from flask_babel import get_locale

...

@app.before_request

def before_request():

 # ...

 g.locale = str(get_locale())

The get_locale() function from Flask-Babel returns a locale object,
but I just want to have the language code, which can be obtained by
converting the object to a string. Now that I have g.locale, I can
access it from the base template to configure moment.js with the

correct language:

Listing 13.7: app/templates/base.html: Set locale for moment.js.

...

{% block scripts %}

 {{ super() }}

 {{ moment.include_moment() }}

 {{ moment.lang(g.locale) }}

{% endblock %}

And now all dates and times should appear in the same language as
the text. Below you can see how the application looks in Spanish:

At this point, all texts except those that were provided by the user in
blog posts or profile descriptions should be translatable into other
languages.

13.8 Command-Line
Enhancements
You will probably agree with me that the pybabel commands are a bit
long and difficult to remember. I’m going to use this opportunity to
show you how you can create custom commands that are integrated
with the flask command. So far, you’ve seen me use flask run, flask
shell, and several flask db sub-commands provided by the Flask-
Migrate extension. It is actually easy to add application-specific
commands to flask as well. So what I’m going to do now is create a
few simple commands that trigger the pybabel commands with all the
arguments that are specific to this application. The commands that
I’m going to add are:

flask translate init LANG to add a new language
flask translate update to update all language repositories
flask translate compile to compile all language repositories

The babel export step is not going to be a command, because
generating the messages.pot file is always a pre-requisite to running
either the init or the update commands, so the implementation of
these commands will generate the translation template file as a
temporary file.

Flask relies on Click for all its command-line operations. Commands
like translate, which are a root for several sub-commands are created
via the app.cli.group() decorator. I’m going to put these commands
in a new module called app/cli.py:

Listing 13.8: app/cli.py: Translate command group.

from app import app

http://click.pocoo.org/5/

@app.cli.group()

def translate():

 """Translation and localization commands."""

 pass

The name of the command comes from the name of the decorated
function, and the help message comes from the docstring. Since this is
a parent command that only exists to provide a base for the sub-
commands, the function itself does not need to do anything.

The update and compile are easy to implement, because they do not
take any arguments:

Listing 13.9: app/cli.py: Update and compile sub-commands.

import os

...

@translate.command()

def update():

 """Update all languages."""

 if os.system('pybabel extract -F babel.cfg -k _l -o messages.pot .'):

 raise RuntimeError('extract command failed')

 if os.system('pybabel update -i messages.pot -d app/translations'):

 raise RuntimeError('update command failed')

 os.remove('messages.pot')

@translate.command()

def compile():

 """Compile all languages."""

 if os.system('pybabel compile -d app/translations'):

 raise RuntimeError('compile command failed')

Note how the decorator from these functions is derived from the
translate parent function. This may seem confusing, since
translate() is a function, but it is the standard way in which Click
builds groups of commands. Same as with the translate() function,
the docstrings for these functions are used as help message in the –
help output.

You can see that for all commands, I run them and make sure that the
return value is zero, which implies that the command did not return
any error. If the command errors, then I raise a RuntimeError, which
will cause the script to stop. The update() function combines the

extract and update steps in the same command, and if everything is
successful, it deletes the messages.pot file after the update is complete,
since this file can be easily regenerated when needed again.

The init command takes the new language code as an argument. Here
is the implementation:

Listing 13.10: app/cli.py: Init sub-command.

import click

@translate.command()

@click.argument('lang')

def init(lang):

 """Initialize a new language."""

 if os.system('pybabel extract -F babel.cfg -k _l -o messages.pot .'):

 raise RuntimeError('extract command failed')

 if os.system(

 'pybabel init -i messages.pot -d app/translations -l ' + lang):

 raise RuntimeError('init command failed')

 os.remove('messages.pot')

This command uses the @click.argument decorator to define the
language code. Click passes the value provided in the command to the
handler function as an argument, and then I incorporate the argument
into the init command.

The final step to enable these commands to work is to import them, so
that the commands get registered. I decided to do this in the
microblog.py file in the top-level directory:

Listing 13.11: microblog.py: Register command-line commands.

from app import cli

Here the only thing I need to do is import the new cli.py module, there
is no need to do anything with it, as the import causes the command
decorators to run and register the command.

At this point, running flask –help will list the translate command as
an option. And flask translate –help will show the three sub-
commands that I defined:

(venv) $ flask translate --help

Usage: flask translate [OPTIONS] COMMAND [ARGS]...

 Translation and localization commands.

Options:

 --help Show this message and exit.

Commands:

 compile Compile all languages.

 init Initialize a new language.

 update Update all languages.

So now, the workflow is much simpler and there is no need to
remember long and complicated commands. To add a new language,
you use:

(venv) $ flask translate init <language-code>

To update all the languages after making changes to the _() and _l()
language markers:

(venv) $ flask translate update

And to compile all languages after updating the translation files:

(venv) $ flask translate compile

Chapter 14

Ajax
In this article I’m going to take a departure from the “safe zone” of
server-side development and to work on a feature that has equally
important server and client-side components. Have you seen the
“Translate” links that some sites show next to user generated content?
These are links that trigger a real time automated translation of
content that is not in the user’s native language. The translated
content is typically inserted below the original version. Google shows
it for search results in foreign languages. Facebook does it for posts.
Twitter does it for tweets. Today I’m going to show you how to add the
very same feature to Microblog!

The GitHub links for this chapter are: Browse, Zip, Diff.

https://github.com/miguelgrinberg/microblog/tree/v0.14
https://github.com/miguelgrinberg/microblog/archive/v0.14.zip
https://github.com/miguelgrinberg/microblog/compare/v0.13...v0.14

14.1 Server-side vs. Client-
side
In the traditional server-side model that I’ve followed so far there is a
client (a web browser commanded by a user) making HTTP requests
to the application server. A request can simply ask for an HTML page,
like when you click the “Profile” link, or it can trigger an action, like
when you click the Submit button after editing your profile
information. In both types of requests the server completes the
request by sending a new web page to the client, either directly or by
issuing a redirect. The client then replaces the current page with the
new one. This cycle repeats for as long as the user stays on the
application’s web site. In this model the server does all the work, while
the client just displays the web pages and accepts user input.

There is a different model in which the client takes a more active role.
In this model, the client issues a request to the server and the server
responds with a web page, but unlike the previous case, not all the
page data is HTML, there is also sections of the page with code,
typically written in Javascript. Once the client receives the page it
displays the HTML portions, and executes the code. From then on you
have an active client that can do work on its own without little or no
contact with the server. In a strict client-side application the entire
application is downloaded to the client with the initial page request,
and then the application runs entirely on the client, only contacting
the server to retrieve or store data and making dynamic changes to the
appearance of that first and only web page. This type of applications
are called Single Page Applications or SPAs.

Most applications are a hybrid between the two models and combine
techniques of both. My Microblog application is mostly a server-side
application, but today I will be adding a little bit of client-side action to

http://en.wikipedia.org/wiki/Single-page_application

it. To do real time translations of user posts, the client browser will
send asynchronous requests to the server, to which the server will
respond without causing a page refresh. The client will then insert the
translations into the current page dynamically. This technique is
known as Ajax, which is short for Asynchronous JavaScript and XML
(even though these days XML is often replaced with JSON).

http://en.wikipedia.org/wiki/Ajax_(programming)

14.2 Live Translation
Workflow
The application has good support for foreign languages thanks to
Flask-Babel, which would make it possible to support as many
languages as I can find translators for. But of course, there is one
element missing. Users are going to write blog posts in their own
languages, so it is quite possible that a user will come across posts that
are written in unknown languages. The quality of automated
translations isn’t always great, but in most cases it is good enough if all
you want is to have a basic idea of what a text in another language
means.

This is an ideal feature to implement as an Ajax service. Consider that
the index or explore pages could be showing several posts, some of
which might be in foreign languages. If I implement the translation
using traditional server-side techniques, a request for a translation
would cause the original page to get replaced with a new page. The
fact is that requesting a translation for one out of many displayed
blogs posts isn’t a big enough action to require a full page update, this
feature works much better if the translated text is dynamically inserted
below the original text while leaving the rest of the page untouched.

Implementing live automated translations requires a few steps. First,
I need a way to identify the source language of the text to translate. I
also need to know the preferred language for each user, because I want
to show a “translate” link only for posts written in other languages.
When a translation link is offered and the user clicks on it, I will need
to send the Ajax request to the server, and the server will contact a
third-party translation API. Once the server sends back a response
with the translated text, the client-side javascript code will
dynamically insert this text into the page. As you can surely notice,

there are a few non-trivial problems here. I’m going to look at these
one by one.

14.3 Language
Identification
The first problem is identifying what language a post was written in.
This isn’t an exact science, as it is not always possible to unequivocally
detect a language, but for most cases, automated detection works fairly
well. In Python, there is a good language detection library called
guess_language. The original version of this package is fairly old and
was never ported to Python 3, so I’m going to install a derived version
that supports Python 2 and 3:

(venv) $ pip install guess_language-spirit

The plan is to feed each blog post to this package, to try to determine
the language. Since doing this analysis is somewhat time consuming, I
don’t want to repeat this work every time a post is rendered to a page.
What I’m going to do is set the source language for a post at the time it
is submitted. The detected language is then going to be stored in the
posts table.

The first step is to add a language field to the Post model:

Listing 14.1: app/models.py: Add detected language to Post model.

class Post(db.Model):

 # ...

 language = db.Column(db.String(5))

As you recall, each time there is a change made to the database
models, a database migration needs to be issued:

(venv) $ flask db migrate -m "add language to posts"

INFO [alembic.runtime.migration] Context impl SQLiteImpl.

INFO [alembic.runtime.migration] Will assume non-transactional DDL.

INFO [alembic.autogenerate.compare] Detected added column 'post.language'

 Generating migrations/versions/2b017edaa91f_add_language_to_posts.py ... done

And then the migration needs to be applied to the database:

(venv) $ flask db upgrade

INFO [alembic.runtime.migration] Context impl SQLiteImpl.

INFO [alembic.runtime.migration] Will assume non-transactional DDL.

INFO [alembic.runtime.migration] Upgrade ae346256b650 -> 2b017edaa91f, add language to posts

I can now detect and store the language when a post is submitted:

Listing 14.2: app/routes.py: Save language for new posts.

from guess_language import guess_language

@app.route('/', methods=['GET', 'POST'])

@app.route('/index', methods=['GET', 'POST'])

@login_required

def index():

 form = PostForm()

 if form.validate_on_submit():

 language = guess_language(form.post.data)

 if language == 'UNKNOWN' or len(language) > 5:

 language = ''

 post = Post(body=form.post.data, author=current_user,

 language=language)

 # ...

With this change, each time a post is submitted, I run the text through
the guess_language function to try to determine the language. If the
language comes back as unknown or if I get an unexpectedly long
result, I play it safe and save an empty string to the database. I’m
going to adopt the convention that any post that have the language set
to an empty string is assumed to have an unknown language.

14.4 Displaying a
“Translate” Link
The second step is easy. What I’m going to do now is add a “Translate”
link next to any posts that are not in the language the is active for the
current user.

Listing 14.3: app/templates/_post.html: Add a translate link to
posts.

 {% if post.language and post.language != g.locale %}

 {{ _('Translate') }}

 {% endif %}

I’m doing this in the _post.html sub-template, so that this
functionality appears on any page that displays blog posts. The
translate link will only appear on posts for which the language was
detected, and this language does not match the language selected by
the function decorated with Flask-Babel’s localeselector decorator.
Recall from Chapter 13 that the selected locale is stored as g.locale.
The text of the link needs to be added in a way that it can be translated
by Flask-Babel, so I used the _() function when I defined it.

Note that I have no associated an action with this link yet. First I want
to figure out how to carry out the actual translations.

14.5 Using a Third-Party
Translation Service
The two major translation services are Google Cloud Translation API
and Microsoft Translator Text API. Both are paid services, but the
Microsoft offering has an entry level option for low volume of
translations that is free. Google offered a free translation service in the
past but today, even the lowest service tier is paid. Because I want to
be able to experiment with translations without incurring in expenses,
I’m going to implement the Microsoft solution.

Before you can use the Microsoft Translator API, you will need to get
an account with Azure, Microsoft’s cloud service. You can select the
free tier, while you will be asked to provide a credit card number
during the signup process, your card is not going to be charged while
you stay on that level of service.

Once you have the Azure account, go to the Azure Portal and click on
the “New” button on the top left, and then type or select the
“Translator Text API”. When you click the “Create” button, you will be
presented with a form in which you define a new translator resource
that will be added to your account. You can see below how I
completed the form:

https://developers.google.com/translate/
https://www.microsoft.com/en-us/translator/business/
https://azure.com

When you click the “Create” button once again, the translator API
resource will be added to your account. If you want a few seconds, you
will receive a notification in the top bar that the translator resource
was deployed. Click the “Go to resource” button in the notification and
then on the “Keys” option on the left sidebar. You will now see two
keys, labeled “Key 1” and “Key 2”. Copy either one of the keys to the
clipboard and then enter it into an environment variable in your
terminal (if you are using Microsoft Windows, replace export with
set):

(venv) $ export MS_TRANSLATOR_KEY=<paste-your-key-here>

This key is used to authenticate with the translation service, so it needs
to be added to the application configuration:

Listing 14.4: config.py: Add Microsoft Translator API key to the

configuration.

class Config(object):

 # ...

 MS_TRANSLATOR_KEY = os.environ.get('MS_TRANSLATOR_KEY')

As always with configuration values, I prefer to install them in
environment variables and import them into the Flask configuration
from there. This is particularly important with sensitive information
such as keys or passwords that enable access to third-party services.
You definitely do not want to write those explicitly in the code.

The Microsoft Translator API is a web service that accepts HTTP
requests. There are a few HTTP clients in Python, but the most
popular and simple to use is the requests package. So let’s install that
into the virtual environment:

(venv) $ pip install requests

Below you can see the function that I coded to translate text using the
Microsoft Translator API. I am putting in a new app/translate.py
module:

Listing 14.5: app/translate.py: Text translation function.

import json

import requests

from flask_babel import _

from app import app

def translate(text, source_language, dest_language):

 if 'MS_TRANSLATOR_KEY' not in app.config or \

 not app.config['MS_TRANSLATOR_KEY']:

 return _('Error: the translation service is not configured.')

 auth = {'Ocp-Apim-Subscription-Key': app.config['MS_TRANSLATOR_KEY']}

 r = requests.get('https://api.microsofttranslator.com/v2/Ajax.svc'

 '/Translate?text={}&from={}&to={}'.format(

 text, source_language, dest_language),

 headers=auth)

 if r.status_code != 200:

 return _('Error: the translation service failed.')

 return json.loads(r.content.decode('utf-8-sig'))

The function takes the text to translate and the source and destination
language codes as arguments, and it returns a string with the

translated text. It starts by checking that there is a key for the
translation service in the configuration, and if it isn’t there it returns
an error. The error is also a string, so from the outside, this is going to
look like the translated text. This ensures that in the case of an error,
the user will see a meaningful error message.

The get() method from the requests package sends an HTTP request
with a GET method to the URL given as the first argument. I’m using
the /v2/Ajax.svc/Translate URL, which is an endpoint from the
translation service that returns translations as a JSON payload. The
text, source and destination languages need to be given as query string
arguments in the URL, named text, from and to respectively. To
authenticate with the service, I need to pass the key that I added to the
configuration. This key needs to be given in a custom HTTP header
with the name Ocp-Apim-Subscription-Key. I created the auth
dictionary with this header and then pass it to requests in the headers
argument.

The requests.get() method returns a response object, which contains
all the details provided by the service. I first need to check that the
status code is 200, which is the code for a successful request. If I get
any other codes, I know that there was an error, so in that case I return
an error string. If the status code is 200, then the body of the response
has a JSON encoded string with the translation, so all I need to do is
use the json.loads() function from the Python standard library to
decode the JSON into a Python string that I can use. The content
attribute of the response object contains the raw body of the response
as a bytes object, which is converted to a UTF-8 string and sent to
json.loads().

Below you can see a Python console session in which I use the new
translate() function:

>>> from app.translate import translate

>>> translate('Hi, how are you today?', 'en', 'es') # English to Spanish

'Hola, ¿cómo estás hoy?'

>>> translate('Hi, how are you today?', 'en', 'de') # English to German

'Are Hallo, how you heute?'

>>> translate('Hi, how are you today?', 'en', 'it') # English to Italian

'Ciao, come stai oggi?'

>>> translate('Hi, how are you today?', 'en', 'fr') # English to French

"Salut, comment allez-vous aujourd'hui ?"

Pretty cool, right? Now it’s time to integrate this functionality with the
application.

14.6 Ajax From The Server
I’m going to start by implementing the server-side part. When the
user clicks the Translate link that appears below a post, an
asynchronous HTTP request will be issued to the server. I’ll show you
how to do this in the next session, so for now I’m going to concentrate
on implementing the handling of this request by the server.

An asynchronous (or Ajax) request is similar to the routes and view
functions that I have created in the application, with the only
difference that instead of returning HTML or a redirect, it just returns
data, formatted as XML or more commonly JSON. Below you can see
the translation view function, which invokes the Microsoft Translator
API and then returns the translated text in JSON format:

Listing 14.6: app/routes.py: Text translation view function.

from flask import jsonify

from app.translate import translate

@app.route('/translate', methods=['POST'])

@login_required

def translate_text():

 return jsonify({'text': translate(request.form['text'],

 request.form['source_language'],

 request.form['dest_language'])})

As you can see, this is simple. I implemented this route as a POST
request. There is really no absolute rule as to when t use GET or POST
(or other request methods that you haven’t seen yet). Since the client
will be sending data, I decided to use a POST request, as that is similar
to the requests that submit form data. The request.form attribute is a
dictionary that Flask exposes with all the data that has included in the
submission. When I worked with web forms, I did not need to look at
request.form because Flask-WTF does all that work for me, but in this
case, there is really no web form, so I have to access the data directly.

http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/JSON

So what I’m doing in this function is to invoke the translate()
function from the previous section passing the three arguments
directly from the data that was submitted with the request. The result
is incorporated into a single-key dictionary, under the key text, and
the dictionary is passed as an argument to Flask’s jsonify() function,
which converts the dictionary to a JSON formatted payload. The
return value from jsonify() is the HTTP response that is going to be
sent back to the client.

For example, if the client wanted to translate the string Hello, World!
to Spanish, the response from this request would have the follow
payload:

{ "text": "Hola, Mundo!" }

14.7 Ajax From The Client
So now that the server is able to provide translations through the
/translate URL, I need to invoke this URL when the user clicks the
“Translate” link I added above, passing the text to translate and the
source and destination languages. If you are not familiar with working
with JavaScript in the browser this is going to be a good learning
experience.

When working with JavaScript in the browser, the page currently
being displayed is internally represented in as the Document Object
Model or just the DOM. This is a hierarchical structure that references
all the elements that exist in the page. The JavaScript code running in
this context can make changes to the DOM to trigger changes in the
page.

Let’s first discuss how my JavaScript code running in the browser can
obtain the three arguments that I need to send to the translate
function that runs in the server. To obtain the text, I need to locate the
node within the DOM that contains the blog post body and read its
contents. To make it easy to identify the DOM nodes that contain blog
posts, I’m going to attach a unique ID to them. If you look at the
_post.html template, the line that renders the post body just reads {{
post.body }}. What I’m going to do is wrap this content in a
element. This is not going to change anything visually, but it gives me
a place where I can insert an identifier:

Listing 14.7: app/templates/_post.html: Add an ID to each blog
post.

 {{ post.body }}

This is going to assign a unique identifier to each blog post, with the

format post1, post2, and so on, where the number matches the
database identifier of each post. Now that each blog post has a unique
identifier, given a ID value I can use jQuery to locate the
element for that post and extract the text in it. For example, if I
wanted to get the text for a post with ID 123 this is what I would do:

$('#post123').text()

Here the $ sign is the name of a function provided by the jQuery
library. This library is used by Bootstrap, so it was already included by
Flask-Bootstrap. The # is part of the “selector” syntax used by jQuery,
which means that what follows is the ID of an element.

I will also want to have a place where I will be inserting the translated
text once I receive it from the server. What I’m going to do, is replace
the “Translate” link with the translated text, so I also need to have a
unique identifier for that node:

Listing 14.8: app/templates/_post.html: Add an ID to the translate
link.

 {{ _('Translate') }}

So now for a given post ID, I have a post<ID> node for the blog post,
and a corresponding translation<ID> node where I will need to
replace the Translate link with the translated text once I have it.

The next step is to write a function that can do all the translation
work. This function will take the input and output DOM nodes, and
the source and destination languages, issue the asynchronous request
to the server with the three arguments needed, and finally replace the
Translate link with the translated text once the server responds. This
sounds like a lot of work, but the implementation is fairly simple:

Listing 14.9: app/templates/base.html: Client-side translate
function.

{% block scripts %}

 ...

 <script>

 function translate(sourceElem, destElem, sourceLang, destLang) {

 $(destElem).html(''

 $.post('/translate', {

 text: $(sourceElem).text(),

 source_language: sourceLang,

 dest_language: destLang

 }).done(function(response) {

 $(destElem).text(response['text'])

 }).fail(function() {

 $(destElem).text("{{ _('Error: Could not contact server.') }}");

 });

 }

 </script>

{% endblock %}

The first two arguments are the unique IDs for the post and the
translate link nodes. The last two argument are the source and
destination language codes.

The function begins with a nice touch: it adds a spinner replacing the
Translate link so that the user knows that the translation is in
progress. This is done with jQuery, using the $(destElem).html()
function to replace the original HTML that defined the translate link
with new HTML content based on the link. For the spinner, I’m
going to use a small animated GIF that I have added to the
app/static/loading.gif directory, which Flask reserves for static files.
To generate the URL that references this image, I’m using the
url_for() function, passing the special route name static and giving
the filename of the image as an argument. You can find the
loading.gif image in the download package for this chapter.

So now I have a nice spinner that took the place of the Translate link,
so the user knows to wait for the translation to appear. The next step
is to send the POST request to the /translate URL that I defined in the
previous section. For this I’m also going to use jQuery, in this case the
$.post() function. This function submits data to the server in a format
that is similar to how the browser submits a web form, which is
convenient because that allows Flask to incorporate this data into the
request.form dictionary. The arguments to $.post() are two, first the
URL to send the request to, and then a dictionary (or object, as these

https://github.com/miguelgrinberg/microblog/tree/v0.14

are called in JavaScript) with the three data items the server expects.

You probably know that JavaScript works a lot with callback functions,
or a more advanced form of callbacks called promises. What I want to
do now is indicate what I want done once this request completes and
the browser receives the response. In JavaScript there is no such thing
as waiting for something, everything is asynchronous. What I need to
do instead is to provide a callback function that the browser will
invoke when the response is received. And also as a way to make
everything as robust as possible, I want to indicate what to do in the
case an error has ocurred, so that would be a second callback function
to handle errors. There are a few ways to specify these callbacks, but
for this case, using promises makes the code fairly clear. The syntax is
as follows:

$.post(<url>, <data>).done(function(response) {

 // success callback

}).fail(function() {

 // error callback

})

The promise syntax allows you to basically “chain” the callbacks to the
return value of the $.post() call. In the success callback, all I need to
do is call $(destElem).text() with the translated text, which comes in
a dictionary under the text key. In the case of an error, I do the same,
but the text that I display is a generic error message, which I make
sure is entered in the base template as a translatable text.

So now the only thing that is left is to trigger the translate() function
with the correct arguments as a result of the user clicking a Translate
link. There are also a few ways to do this, what I’m going to do is just
embed the call to the function in the href attribute of the link:

Listing 14.10: app/templates/_post.html: Translate link handler.

 <a href="javascript:translate(

 '#post{{ post.id }}',

 '#translation{{ post.id }}',

 '{{ post.language }}',

 '{{ g.locale }}');">{{ _('Translate') }}

The href element of a link can accept any JavaScript code if it is
prefixed with javascript:, so that is a convenient way to make the call
to the translation function. Because this link is going to be rendered in
the server when the client requests the page, I can use {{ }}
expressions to generate the four arguments to the function. Each post
will have its own translate link, with its uniquely generated
arguments. The # that you see as a prefix to the post<ID> and
translation<ID> elements indicates that what follows is an element ID.

Now the live translation feature is complete! If you have set a valid
Microsoft Translator API key in your environment, you should now be
able to trigger translations. Assuming you have your browser set to
prefer English, you will need to write a post in another language to see
the “Translate” link. Below you can see an example:

In this chapter I introduced a few new texts that need to be translated
into all the languages supported by the application, so it is necessary
to update the translation catalogs:

(venv) $ flask translate update

For your own projects you will then need to edit the messages.po files
in each language repository to include the translations for these new
tests, but I have already created the Spanish translations in the
download package for this chapter or the GitHub repository.

To publish the new translations, they need to be compiled:

(venv) $ flask translate compile

Chapter 15

A Better Application
Structure
Microblog is already an application of a decent size, so I thought this is
a good opportunity to discuss how a Flask application can grow
without becoming messy or too difficult to manage. Flask is a
framework that is designed to give you the option to organize your
project in any way you want, and as part of that philosophy, it makes it
possible to change or adapt the structure of the application as it
becomes larger, or as your needs or level of experience change.

In this chapter I’m going to discuss some patterns that apply to large
applications, and to demonstrate them I’m going to make some
changes to the way my Microblog project is structured, with the goal of
making the code more maintainable and better organized. But of
course, in true Flask spirit, I encourage you to take these changes just
as a recommendation when trying to decide on a way to organize your
own projects.

The GitHub links for this chapter are: Browse, Zip, Diff.

https://github.com/miguelgrinberg/microblog/tree/v0.15
https://github.com/miguelgrinberg/microblog/archive/v0.15.zip
https://github.com/miguelgrinberg/microblog/compare/v0.14...v0.15

15.1 Current Limitations
There are two basic problems with the application in its current state.
If you look at how the application is structured, you are going to notice
that there are a few different subsystems that can be identified, but the
code that supports them is all intermixed, without any clear
boundaries. Let’s review what those subsystems are:

The user authentication subsystem, which includes some view
functions in app/routes.py, some forms in app/forms.py, some
templates in app/templates and the email support in
app/email.py.
The error subsystem, which defines error handlers in
app/errors.py and templates in app/templates.
The core application functionality, which includes displaying and
writing blog posts, user profiles and following, and live
translations of blog posts, which is spread through most of the
application modules and templates.

Thinking about these three subsystems that I have identified and how
they are structured, you can probably notice a pattern. So far, the
organization logic that I’ve been following is based on having modules
dedicated to different application functions. There is a module for
view functions, another one for web forms, one for errors, one for
emails, a directory for HTML templates, and so on. While this is a
structure that makes sense for small projects, once a project starts to
grow, it tends to make some of these modules really large and messy.

One way to clearly see the problem is to consider how you would start
a second project by reusing as much as you can from this one. For
example, the user authentication portion should work well in other
applications, but if you wanted to use that code as it is, you would have
to go into several modules and copy/paste the pertinent sections into

new files in the new project. See how inconvenient that is? Wouldn’t
it be better if this project had all the authentication related files
separated from the rest of the application? The blueprints feature of
Flask helps achieve a more practical organization that makes it easier
to reuse code.

There is a second problem that is not that evident. The Flask
application instance is created as a global variable in
app/__init__.py, and then imported by a lot of application modules.
While this in itself is not a problem, having the application as a global
variable can complicate certain scenarios, in particular those related to
testing. Imagine you want to test this application under different
configurations. Because the application is defined as a global variable,
there is really no way to instantiate two applications that use different
configuration variables. Another situation that is not ideal is that all
the tests use the same application, so a test could be making changes
to the application that affect another test that runs later. Ideally you
want all tests to run on a pristine application instance.

You can actually see in the tests.py module that I’m resorting to the
trick of modifying the configuration after it was set in the application
to direct the tests to use an in-memory database instead of the default
SQLite database based on disk. I really have no other way to change
the configured database, because by the time the tests start the
application has been created and configured. For this particular
situation, changing the configuration after it was applied to the
application appears to work fine, but in other cases it may not, and in
any case, it is a bad practice that can lead to obscure and difficult to
find bugs.

A better solution would be to not use a global variable for the
application, and instead use an application factory function to create
the function at runtime. This would be a function that accepts a
configuration object as an argument, and returns a Flask application
instance, configured with those settings. If I could modify the
application to work with an application factory function, then writing
tests that require special configuration would become easy, because

each test can create its own application.

In this chapter I’m going to refactor the application to introduce
blueprints for the three subsystems I have identified above, and an
application factory function. Showing you the detailed list of changes
is going to be impractical, because there are little changes in pretty
much every file that is part of the application, so I’m going to discuss
the steps that I took to do the refactoring, and you can then download
the application with these changes made.

https://github.com/miguelgrinberg/microblog/archive/v0.15.zip

15.2 Blueprints
In Flask, a blueprint is a logical structure that represents a subset of
the application. A blueprint can include elements such as routes, view
functions, forms, templates and static files. If you write your blueprint
in a separate Python package, then you have a component that
encapsulates the elements related to specific feature of the application.

The contents of a blueprint are initially in a dormant state. To
associate these elements, the blueprint needs to be registered with the
application. During the registration, all the elements that were added
to the blueprint are passed on to the application. So you can think of a
blueprint as a temporary storage for application functionality that
helps in organizing your code.

15.2.1 Error Handling Blueprint

The first blueprint that I created was one that encapsulates the
support for error handlers. The structure of this blueprint is as
follows:

app/

 errors/ <-- blueprint package

 __init__.py <-- blueprint creation

 handlers.py <-- error handlers

 templates/

 errors/ <-- error templates

 404.html

 500.html

 __init__.py <-- blueprint registration

In essence, what I did is move the app/errors.py module into
app/errors/handlers.py and the two error templates into
app/templates/errors, so that they are separated from the other
templates. I also had to change the render_template() calls in both

error handlers to use the new errors template sub-directory. After
that I added the blueprint creation to the app/errors/__init__.py
module, and the blueprint registration to app/__init__.py, after the
application instance is created.

I should note that Flask blueprints can be configured to have a
separate directory for templates or static files. I have decided to move
the templates into a sub-directory of the application’s template
directory so that all templates are in a single hierarchy, but if you
prefer to have the templates that belong to a blueprint inside the
blueprint package, that is supported. For example, if you add a
template_folder=’templates’ argument to the Blueprint()
constructor, you can then store the blueprint’s templates in
app/errors/templates.

The creation of a blueprint is fairly similar to the creation of an
application. This is done in the ___init__.py module of the blueprint
package:

Listing 15.1: app/errors/__init__.py: Errors blueprint.

from flask import Blueprint

bp = Blueprint('errors', __name__)

from app.errors import handlers

The Blueprint class takes the name of the blueprint, the name of the
base module (typically set to __name__ like in the Flask application
instance), and a few optional arguments, which in this case I do not
need. After the blueprint object is created, I import the handlers.py
module, so that the error handlers in it are registered with the
blueprint. This import is at the bottom to avoid circular dependencies.

In the handlers.py module, instead of attaching the error handlers to
the application with the @app.errorhandler decorator, I use the
blueprint’s @bp.app_errorhandler decorator. While both decorators
achieve the same end result, the idea is to try to make the blueprint
independent of the application so that it is more portable. I also need

to modify the path to the two error templates to account for the new
errors sub-directory where they were moved.

The final step to complete the refactoring of the error handlers is to
register the blueprint with the application:

Listing 15.2: app/__init__.py: Register the errors blueprint with
the application.

app = Flask(__name__)

...

from app.errors import bp as errors_bp

app.register_blueprint(errors_bp)

...

from app import routes, models # <-- remove errors from this import!

To register a blueprint, the register_blueprint() method of the Flask
application instance is used. When a blueprint is registered, any view
functions, templates, static files, error handlers, etc. are connected to
the application. I put the import of the blueprint right above the
app.register_blueprint() to avoid circular dependencies.

15.2.2 Authentication Blueprint

The process to refactor the authentication functions of the application
into a blueprint is fairly similar to that of the error handlers. Here is a
diagram of the refactored blueprint:

app/

 auth/ <-- blueprint package

 __init__.py <-- blueprint creation

 email.py <-- authentication emails

 forms.py <-- authentication forms

 routes.py <-- authentication routes

 templates/

 auth/ <-- blueprint templates

 login.html

 register.html

 reset_password_request.html

 reset_password.html

 __init__.py <-- blueprint registration

To create this blueprint I had to move all the authentication related
functionality to new modules I created in the blueprint. This includes
a few view functions, web forms, and support functions such as the
one that sends password reset tokens by email. I also moved the
templates into a sub-directory to separate them from the rest of the
application, like I did with the error pages.

When defining routes in a blueprint, the @bp.route decorate is used
instead of @app.route. There is also a required change in the syntax
used in the url_for() to build URLs. For regular view functions
attached directly to the application, the first argument to url_for() is
the view function name. When a route is defined in a blueprint, this
argument must include the blueprint name and the view function
name, separated by a period. So for example, I had to replace all
occurrences of url_for(’login’) with url_for(’auth.login’), and
same for the remaining view functions.

To register the auth blueprint with the application, I used a slightly
different format:

Listing 15.3: app/__init__.py: Register the authentication
blueprint with the application.

...

from app.auth import bp as auth_bp

app.register_blueprint(auth_bp, url_prefix='/auth')

...

The register_blueprint() call in this case has an extra argument,
url_prefix. This is entirely optional, but Flask gives you the option to
attach a blueprint under a URL prefix, so any routes defined in the
blueprint get this prefix in their URLs. In many cases this is useful as
a sort of “namespacing” that keeps all the routes in the blueprint
separated from other routes in the application or other blueprints. For
authentication, I thought it was nice to have all the routes starting with
/auth, so I added the prefix. So now the login URL is going to be

http://localhost:5000/auth/login. Because I’m using url_for() to
generate the URLs, all URLs will automatically incorporate the prefix.

15.2.3 Main Application Blueprint

The third blueprint contains the core application logic. Refactoring
this blueprint requires the same process that I used with the previous
two blueprints. I gave this blueprint the name main, so all url_for()
calls that referenced view functions had to get a main. prefix. Given
that this is the core functionality of the application, I decided to leave
the templates in the same locations. This is not a problem because I
have moved the templates from the other two blueprints into sub-
directories.

15.3 The Application
Factory Pattern
As I mentioned in the introduction to this chapter, having the
application as a global variable introduces some complications, mainly
in the form of limitations for some testing scenarios. Before I
introduced blueprints, the application had to be a global variable,
because all the view functions and error handlers needed to be
decorated with decorators that come from app, such as @app.route.
But now that all routes and error handlers were moved to blueprints,
there are a lot less reasons to keep the application global.

So what I’m going to do, is add a function called create_app() that
constructs a Flask application instance, and eliminate the global
variable. The transformation was not trivial, I had to sort out a few
complications, but let’s first look at the application factory function:

Listing 15.4: app/__init__.py: Application factory function.

...

db = SQLAlchemy()

migrate = Migrate()

login = LoginManager()

login.login_view = 'auth.login'

login.login_message = _l('Please log in to access this page.')

mail = Mail()

bootstrap = Bootstrap()

moment = Moment()

babel = Babel()

def create_app(config_class=Config):

 app = Flask(__name__)

 app.config.from_object(config_class)

 db.init_app(app)

 migrate.init_app(app, db)

 login.init_app(app)

 mail.init_app(app)

 bootstrap.init_app(app)

 moment.init_app(app)

 babel.init_app(app)

 # ... no changes to blueprint registration

 if not app.debug and not app.testing:

 # ... no changes to logging setup

 return app

You have seen that most Flask extensions are initialized by creating an
instance of the extension and passing the application as an argument.
When the application does not exist as a global variable, there is an
alternative mode in which extensions are initialized in two phases.
The extension instance is first created in the global scope as before,
but no arguments are passed to it. This creates an instance of the
extension that is not attached to the application. At the time the
application instance is created in the factory function, the init_app()
method must be invoked on the extension instances to bind it to the
now known application.

Other tasks performed during initialization remain the same, but are
moved to the factory function instead of being in the global scope.
This includes the registration of blueprints and logging configuration.
Note that I have added a not app.testing clause to the conditional
that decides if email and file logging should be enabled or not, so that
all this logging is skipped during unit tests. The app.testing flag is
going to be True when running unit tests, due to the TESTING variable
being set to True in the configuration.

So who calls the application factory function? The obvious place to use
this function is the top-level microblog.py script, which is the only
module in which the application now exists in the global scope. The
other place is in tests.py, and I will discuss unit testing in more detail
in the next section.

As I mentioned above, most references to app went away with the
introduction of blueprints, but there were some still in the code that I
had to address. For example, the app/models.py, app/translate.py,
and app/main/routes.py modules all had references to app.config.
Fortunately, the Flask developers tried to make it easy for view
functions to access the application instance without having to import it

like I have been doing until now. The current_app variable that Flask
provides is a special “context” variable that Flask initializes with the
application before it dispatches a request. You have already seen
another context variable before, the g variable in which I’m storing the
current locale. These two, along with Flask-Login’s current_user and a
few others you haven’t seen yet, are somewhat “magical” variables, in
that they work like global variables, but are only accessible during the
handling of a request, and only in the thread that is handling it.

Replacing app with Flask’s current_app variable eliminates the need of
importing the application instance as a global variable. I was able to
change all references to app.config with current_app.config without
any difficulty through simple search and replace.

The app/email.py module presented a slightly bigger challenge, so I
had to use a small trick:

Listing 15.5: app/email.py: Pass application instance to another
thread.

from flask import current_app

def send_async_email(app, msg):

 with app.app_context():

 mail.send(msg)

def send_email(subject, sender, recipients, text_body, html_body):

 msg = Message(subject, sender=sender, recipients=recipients)

 msg.body = text_body

 msg.html = html_body

 Thread(target=send_async_email,

 args=(current_app._get_current_object(), msg)).start()

In the send_email() function, the application instance is passed as an
argument to a background thread that will then deliver the email
without blocking the main application. Using current_app directly in
the send_async_email() function that runs as a background thread
would not have worked, because current_app is a context-aware
variable that is tied to the thread that is handling the client request. In
a different thread, current_app would not have a value assigned.
Passing current_app directly as an argument to the thread object

would not have worked either, because current_app is really a proxy
object that is dynamically mapped to the application instance. So
passing the proxy object would be the same as using current_app
directly in the thread. What I needed to do is access the real
application instance that is stored inside the proxy object, and pass
that as the app argument. The current_app._get_current_object()
expression extracts the actual application instance from inside the
proxy object, so that is what I passed to the thread as an argument.

Another module that was tricky was app/cli.py, which implements a
few shortcut commands for managing language translations. The
current_app variable does not work in this case because these
commands are registered at start up, not during the handling of a
request, which is the only time when current_app can be used. To
remove the reference to app in this module, I resorted to another trick,
which is to move these custom commands inside a register() function
that takes the app instance as an argument:

Listing 15.6: app/cli.py: Register custom application commands.

import os

import click

def register(app):

 @app.cli.group()

 def translate():

 """Translation and localization commands."""

 pass

 @translate.command()

 @click.argument('lang')

 def init(lang):

 """Initialize a new language."""

 # ...

 @translate.command()

 def update():

 """Update all languages."""

 # ...

 @translate.command()

 def compile():

 """Compile all languages."""

 # ...

Then I called this register() function from microblog.py. Here is the

complete microblog.py after all the refactoring:

Listing 15.7: microblog.py: Main application module refactored.

from app import create_app, db, cli

from app.models import User, Post

app = create_app()

cli.register(app)

@app.shell_context_processor

def make_shell_context():

 return {'db': db, 'User': User, 'Post' :Post}

15.4 Unit Testing
Improvements
As I hinted in the beginning of this chapter, a lot of the work that I did
so far had the goal of improving the unit testing workflow. When you
are running unit tests you want to make sure the application is
configured in a way that it does not interfere with your development
resources, such as your database.

The current version of tests.py resorts to the trick of modifying the
configuration after it was applied to the application instance, which is
a dangerous practice as not all types of changes will work when done
that late. What I want is to have a chance to specify my testing
configuration before it gets added to the application.

The create_app() function now accepts a configuration class as an
argument. By default, the Config class defined in config.py is used,
but I can now create an application instance that uses different
configuration simply by passing a new class to the factory function.
Here is an example configuration class that would be suitable to use
for my unit tests:

Listing 15.8: tests.py: Testing configuration.

from config import Config

class TestConfig(Config):

 TESTING = True

 SQLALCHEMY_DATABASE_URI = 'sqlite://'

What I’m doing here is creating a subclass of the application’s Config
class, and overriding the SQLAlchemy configuration to use an in-
memory SQLite database. I also added a TESTING attribute set to True,
which I currently do not need, but could be useful if the application

needs to determine if it is running under unit tests or not.

If you recall, my unit tests relied on the setUp() and tearDown()
methods, invoked automatically by the unit testing framework to
create and destroy an environment that is appropriate for each test to
run. I can now use these two methods to create and destroy a brand
new application for each test:

Listing 15.9: tests.py: Create an application for each test.

class UserModelCase(unittest.TestCase):

 def setUp(self):

 self.app = create_app(TestConfig)

 self.app_context = self.app.app_context()

 self.app_context.push()

 db.create_all()

 def tearDown(self):

 db.session.remove()

 db.drop_all()

 self.app_context.pop()

The new application will be stored in self.app, but creating an
application isn’t enough to make everything work. Consider the
db.create_all() statement that creates the database tables. The db
instance needs to know what the application instance is, because it
needs to get the database URI from app.config, but when you are
working with an application factory you are not really limited to a
single application, there could be more than one created. So how does
db know to use the self.app instance that I just created?

The answer is in the application context. Remember the current_app
variable, which somehow acts as a proxy for the application when
there is no global application to import? This variable looks for an
active application context in the current thread, and if it finds one, it
gets the application from it. If there is no context, then there is no way
to know what application is active, so current_app raises an exception.
Below you can see how this works in a Python console. This needs to
be a console started by running python, because the flask shell
command automatically activates an application context for
convenience.

>>> from flask import current_app

>>> current_app.config['SQLALCHEMY_DATABASE_URI']

Traceback (most recent call last):

 ...

RuntimeError: Working outside of application context.

>>> from app import create_app

>>> app = create_app()

>>> app.app_context().push()

>>> current_app.config['SQLALCHEMY_DATABASE_URI']

'sqlite:////home/miguel/microblog/app.db'

So that’s the secret! Before invoking your view functions, Flask pushes
an application context, which brings current_app and g to life. When
the request is complete, the context is removed, along with these
variables. For the db.create_all() call to work in the unit testing
setUp() method, I pushed an application context for the application
instance I just created, and in that way, db.create_all() can use
current_app.config to know where is the database. Then in the
tearDown() method I pop the context to reset everything to a clean
state.

You should also know that the application context is one of two
contexts that Flask uses. There is also a request context, which is more
specific, as it applies to a request. When a request context is activated
right before a request is handled, Flask’s request and session variables
become available, as well as Flask-Login’s current_user.

15.5 Environment Variables
As you have seen as I built this application, there are a number of
configuration options that depend on having variables set up in your
environment before you start the server. This includes your secret key,
email server information, database URL, and Microsoft Translator API
key. You’ll probably agree with me that this is inconvenient, because
each time you open a new terminal session those variables need to be
set again.

A common pattern for applications that depend on lots of
environment variables is to store these in a .env file in the root
application directory. The application imports the variables in this file
when it starts, and that way, there is no need to have all these variables
manually set by you.

There is a Python package that supports .env files, called python-
dotenv. So let’s install that package:

(venv) $ pip install python-dotenv

Since the config.py module is where I read all the environment
variables, I’m going to import a .env file before the Config class is
created, so that the variables are set when the class is constructed:

Listing 15.10: config.py: Import a .env file with environment
variables.

import os

from dotenv import load_dotenv

basedir = os.path.abspath(os.path.dirname(__file__))

load_dotenv(os.path.join(basedir, '.env'))

class Config(object):

 # ...

So now you can create a .env file with all the environment variables
that your application needs. It is important that you do not add your
.env file to source control. You do not want to have a file that contains
passwords and other sensitive information included in your source
code repository.

The .env file can be used for all the configuration-time variables, but it
cannot be used for Flask’s FLASK_APP and FLASK_DEBUG environment
variables, because these are needed very early in the application
bootstrap process, before the application instance and its
configuration object exist.

The following example shows a .env file that defines a secret key,
configures email to go out on a locally running mail server on port 25
and no authentication, sets up the Microsoft Translator API key, and
leaves the database configuration to use the defaults:

SECRET_KEY=a-really-long-and-unique-key-that-nobody-knows

MAIL_SERVER=localhost

MAIL_PORT=25

MS_TRANSLATOR_KEY=<your-translator-key-here>

15.6 Requirements File
At this point I have installed a fair number of packages in the Python
virtual environment. If you ever need to regenerate your environment
on another machine, you are going to have trouble remembering what
packages you had to install, so the generally accepted practice is to
write a requirements.txt file in the root folder of your project listing all
the dependencies, along with their versions. Producing this list is
actually easy:

(venv) $ pip freeze > requirements.txt

The pip freeze command will dump all the packages that are installed
on your virtual environment in the correct format for the
requirements.txt file. Now, if you need to create the same virtual
environment on another machine, instead of installing packages one
by one, you can run:

(venv) $ pip install -r requirements.txt

Chapter 16

Full-Text Search
The goal of this chapter is to implement a search feature for
Microblog, so that users can find interesting posts using natural
language. For many types of web sites, it is possible to just let Google,
Bing, etc. index all the content and provide search results through
their search APIs. This works well for sites that have mostly static
pages, like a forum. But in my application the basic unit of content is a
user post, which is a small portion of the entire web page. The type of
search results that I want are for these individual blog posts and not
entire pages. For example, if I search for the word “dog” I want to see
blog posts from any users that include that word. Obviously a page
that shows all blog posts that have the word “dog” (or any other
possible search term) does not really exist as a page that the big search
engines can find and index, so clearly I have no choice other than to
roll my own search feature.

The GitHub links for this chapter are: Browse, Zip, Diff.

https://github.com/miguelgrinberg/microblog/tree/v0.16
https://github.com/miguelgrinberg/microblog/archive/v0.16.zip
https://github.com/miguelgrinberg/microblog/compare/v0.15...v0.16

16.1 Introduction to Full-
Text Search Engines
Support for full-text search is not standardized like relational
databases are. There are several open-source full-text engines:
Elasticsearch, Apache Solr, Whoosh, Xapian, Sphinx, etc. As if this
isn’t enough choice, there are several databases that also provide
searching capabilities that are comparable to dedicated search engines
like the ones I enumerated above. SQLite, MySQL and PostgreSQL all
offer some support for searching text, and NoSQL databases such as
MongoDB and CouchDB do too.

If you are wondering which of these can work within a Flask
application, the answer is all of them! That is one of the strengths of
Flask, it does its job while not being opinionated. So what’s the best
choice?

From the list of dedicated search engines, Elasticsearch is one that
stands out to me as being fairly popular, in part due to its popularity as
the “E” in the ELK stack for indexing logs, along with Logstash and
Kibana. Using the searching capabilities of one of the relational
databases could also be a good choice, but given the fact that
SQLAlchemy does not support this functionality, I would have to
handle the searching with raw SQL statements, or else find a package
that provides high-level access to text searches while being able to
coexist with SQLAlchemy.

Based on the above analysis, I’m going to use Elasticsearch, but I’m
going to implement all the text indexing and searching functions in a
way that is very easy to switch to another engine. That will allow you
to replace my implementation with an alternative one based on a
different engine just by rewriting a few functions in a single module.

https://www.elastic.co/products/elasticsearch
http://lucene.apache.org/solr/
http://whoosh.readthedocs.io/
https://xapian.org/
http://sphinxsearch.com/
https://www.sqlite.org
https://www.mysql.com/
https://www.postgresql.org/
https://www.mongodb.com/
http://couchdb.apache.org/

16.2 Installing Elasticsearch
There are several ways to install Elasticsearch, including one-click
installers, zip file with the binaries that you need to install yourself,
and even a Docker image. The documentation has an Installation page
with detailed information on all these options. If you are using Linux,
you will likely have a package available for your distribution. If you
are using a Mac and have Homebrew installed, then you can simply
run brew install elasticsearch.

Once you install Elasticsearch on your computer, you can verify that it
is running by typing http://localhost:9200 in your browser’s address
bar, which should return some basic information about the service in
JSON format.

Since I will be managing Elasticsearch from Python, I will also be
using the Python client library:

(venv) $ pip install elasticsearch

You may also want to update your requirements.txt file:

(venv) $ pip freeze > requirements.txt

https://www.elastic.co/guide/en/elasticsearch/reference/current/install-elasticsearch.html

16.3 Elasticsearch Tutorial
I’m going to start by showing you the basics of working with
Elasticsearch from a Python shell. This will help you familiarize with
this service, so that you can understand the implementation that I will
discuss later.

To create a connection to Elasticsearch, create an instance of class
Elasticsearch, passing a connection URL as an argument:

>>> from elasticsearch import Elasticsearch

>>> es = Elasticsearch('http://localhost:9200')

Data in Elasticsearch is written to indexes. Unlike a relational
database, the data is just a JSON object. The following example writes
an object with a field called text to an index called my_index:

>>> es.index(index='my_index', doc_type='my_index', id=1, body={'text': 'this is a test'

An index can store documents of different types if desired, and in that
case the doc_type argument can be set to different values according to
those different formats. I’m going to be storing all documents with the
same format, so I’m setting the document type to the index name.

For each document stored, Elasticsearch takes a unique id and the
JSON object with the data.

Let’s store a second document on this index:

>>> es.index(index='my_index', doc_type='my_index', id=2, body={'text': 'a second test'

And now that there are two documents in this index, I can issue a free-
form search. In this example, I’m going to search for this test:

>>> es.search(index='my_index', doc_type='my_index',

... body={'query': {'match': {'text': 'this test'}}})

http://www.json.org/

The response from the es.search() call is a Python dictionary with the
search results:

{

 'took': 1,

 'timed_out': False,

 '_shards': {'total': 5, 'successful': 5, 'skipped': 0, 'failed': 0},

 'hits': {

 'total': 2,

 'max_score': 0.5753642,

 'hits': [

 {

 '_index': 'my_index',

 '_type': 'my_index',

 '_id': '1',

 '_score': 0.5753642,

 '_source': {'text': 'this is a test'}

 },

 {

 '_index': 'my_index',

 '_type': 'my_index',

 '_id': '2',

 '_score': 0.25316024,

 '_source': {'text': 'a second test'}

 }

]

 }

}

Here you can see that the search returned the two documents, each
with an assigned score. The document with the highest score contains
the two words I searched for, and the other document contains only
one. You can see that even the best result does not have a great score,
because the words do not exactly match the text.

Now this is the result if I search for the word second:

>>> es.search(index='my_index', doc_type='my_index',

... body={'query': {'match': {'text': 'second'}}})

{

 'took': 1,

 'timed_out': False,

 '_shards': {'total': 5, 'successful': 5, 'skipped': 0, 'failed': 0},

 'hits': {

 'total': 1,

 'max_score': 0.25316024,

 'hits': [

 {

 '_index': 'my_index',

 '_type': 'my_index',

 '_id': '2',

 '_score': 0.25316024,

 '_source': {'text': 'a second test'}

 }

]

 }

}

I still get a fairly low score because my search does not match the text
in this document, but since only one of the two documents contains
the word “second”, the other document does not show up at all.

The Elasticsearch query object has more options, all well documented,
and includes options such as pagination and sorting, just like
relational databases.

Feel free to add more entries to this index and try different searches.
When you are done experimenting, you can delete the index with the
following command:

>>> es.indices.delete('my_index')

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-body.html

16.4 Elasticsearch
Configuration
Integrating Elasticsearch into the application is a great example of the
power of Flask. This is a service and Python package that does not
have anything to do with Flask, yet, I’m going to get a pretty good level
of integration, starting from the configuration, which I’m going to
write in the app.config dictionary from Flask:

Listing 16.1: config.py: Elasticsearch configuration.

class Config(object):

 # ...

 ELASTICSEARCH_URL = os.environ.get('ELASTICSEARCH_URL')

Like with many other configuration entries, the connection URL for
Elasticsearch is going to be sourced from an environment variable. If
the variable is not defined, I’m going to let the setting be set to None,
and I’ll use that as a signal to disable Elasticsearch. This is mainly for
convenience, so that you are not forced to always have the
Elasticsearch service up and running when you work on the
application, and in particular when you run unit tests. So to make sure
the service is used, I need to define the ELASTICSEARCH_URL
environment variable, either directly in the terminal or by adding it to
the .env file as follows:

ELASTICSEARCH_URL=http://localhost:9200

Elasticsearch presents the challenge that it isn’t wrapped by a Flask
extension. I cannot create the Elasticsearch instance in the global
scope like I did in the examples above because to initialize it I need
access to app.config, which only becomes available after the

create_app() function is invoked. So I decided to add a elasticsearch
attribute to the app instance in the application factory function:

Listing 16.2: app/__init__.py: Elasticsearch instance.

...

from elasticsearch import Elasticsearch

...

def create_app(config_class=Config):

 app = Flask(__name__)

 app.config.from_object(config_class)

 # ...

 app.elasticsearch = Elasticsearch([app.config['ELASTICSEARCH_URL']]) \

 if app.config['ELASTICSEARCH_URL'] else None

 # ...

Adding a new attribute to the app instance may seem a little strange,
but Python objects are not strict in their structure, new attributes can
be added to them at any time. An alternative that you may also
consider is to create a subclass of Flask (maybe call it Microblog), with
the elasticsearch attribute defined in its __init__() function.

Note how I use a conditional expression to make the Elasticsearch
instance None when a URL for the Elasticsearch service wasn’t defined
in the environment.

https://docs.python.org/3/reference/expressions.html#conditional-expressions

16.5 A Full-Text Search
Abstraction
As I said in the chapter’s introduction, I want to make it easy to switch
from Elasticsearch to other search engines, and I also don’t want to
code this feature specifically for searching blog posts, I prefer to design
a solution that in the future I can easily extend to other models if I
need to. For all these reasons, I decided to create an abstraction for
the search functionality. The idea is to design the feature in generic
terms, so I will not be assuming that the Post model is the only one
that needs to be indexed, and I will also not be assuming that
Elasticsearch is the index engine of choice. But if I can’t make any
assumptions about anything, how can I get this work done?

The first thing that I need, is to somehow find a generic way to indicate
which model and which field or fields in it are to be indexed. I’m going
to say that any model that needs indexing needs to define a
__searchable__ class attribute that lists the fields that need to be
included in the index. For the Post model, these are the changes:

Listing 16.3: app/models.py: Add a __searchable__ attribute to
the Post model.

class Post(db.Model):

 __searchable__ = ['body']

 # ...

So here I’m saying that this model needs to have its body field indexed.
But just to make sure this is perfectly clear, this __searchable__
attribute that I added is just a variable, it does not have any behavior
associated with it. It will just help me write my indexing functions in a
generic way.

I’m going to write all the code that interacts with the Elasticsearch
index in a app/search.py module. The idea is to keep all the
Elasticsearch code in this module. The rest of the application will use
the functions in this new module to access the index and will not have
direct access to Elasticsearch. This is important, because if one day I
decided I don’t like Elasticsearch anymore and want to switch to a
different engine, all I need to do is rewrite the functions in this
module, and the application will continue to work as before.

For this application, I decided that I need three supporting functions
related to text indexing: I need to add entries to a full-text index, I
need to remove entries from the index (assuming one day I will
support deleting blog posts), and I need to execute a search query.
Here is the app/search.py module that implements these three
functions for Elasticsearch, using the functionality I showed you above
from the Python console:

Listing 16.4: app/search.py: Search functions.

from flask import current_app

def add_to_index(index, model):

 if not current_app.elasticsearch:

 return

 payload = {}

 for field in model.__searchable__:

 payload[field] = getattr(model, field)

 current_app.elasticsearch.index(index=index, doc_type=index, id=model.id,

 body=payload)

def remove_from_index(index, model):

 if not current_app.elasticsearch:

 return

 current_app.elasticsearch.delete(index=index, doc_type=index, id=model.id)

def query_index(index, query, page, per_page):

 if not current_app.elasticsearch:

 return [], 0

 search = current_app.elasticsearch.search(

 index=index, doc_type=index,

 body={'query': {'multi_match': {'query': query, 'fields': ['*']}},

 'from': (page - 1) * per_page, 'size': per_page})

 ids = [int(hit['_id']) for hit in search['hits']['hits']]

 return ids, search['hits']['total']

These functions all start by checking if app.elasticsearch is None, and

in that case return without doing anything. This is so that when the
Elasticsearch server isn’t configured, the application continues to run
without the search capability and without giving any errors. This is
just as a matter of convenience during development or when running
unit tests.

The functions accept the index name as an argument. In all the calls
I’m passing down to Elasticsearch, I’m using this name as the index
name and also as the document type, as I did in the Python console
examples.

The functions that add and remove entries from the index take the
SQLAlchemy model as a second argument. The add_to_index()
function uses the __searchable__ class variable I added to the model to
build the document that is inserted into the index. If you recall,
Elasticsearch documents also needed a unique identifier. For that I’m
using the id field of the SQLAlchemy model, which is also
conveniently unique. Using the same id value for SQLAlchemy and
Elasticsearch is very useful when running the searches, as it allows me
to link entries in the two databases. Something I did not mention
above is that if you attempt to add an entry with an existing id, then
Elasticsearch replaces the old entry with the new one, so
add_to_index() can be used for new objects as well as for modified
ones.

I did not show you the es.delete() function that I’m using in
remove_from_index() before. This function deletes the document
stored under the given id. Here is a good example of the convenience
of using the same id to link entries in both databases.

The query_index() function takes the index name and a text to search
for, along with pagination controls, so that search results can be
paginated like Flask-SQLAlchemy results are. You have already seen
an example usage of the es.search() function from the Python
console. The call I’m issuing here is fairly similar, but instead of using
a match query type, I decided to use multi_match, which can search
across multiple fields. By passing a field name of *, I’m telling

Elasticsearch to look in all the fields, so basically I’m searching the
entire index. This is useful to make this function generic, since
different models can have different field names in the index.

The body argument to es.search() includes pagination arguments in
addition to the query itself. The from and size arguments control what
subset of the entire result set needs to be returned. Elasticsearch does
not provide a nice Pagination object like the one from Flask-
SQLAlchemy, so I have to do the pagination math to calculate the from
value.

The return statement in the query_index() function is somewhat
complex. It returns two values: the first is a list of id elements for the
search results, and the second is the total number of results. Both are
obtained from the Python dictionary returned by the es.search()
function. If you are not familiar with the expression that I’m using to
obtain the list of IDs, this is called a list comprehension, and is a
fantastic feature of the Python language that allows you to transform
lists from one format to another. In this case I’m using the list
comprehension to extract the id values from the much larger list of
results provided by Elasticsearch.

Is this too confusing? Maybe a demonstration of these functions from
the Python console can help you understand them a bit more. In the
following session, I manually add all the posts from the database to the
Elasticsearch index. In my test database, I had a few posts that had
the numbers “one”, “two”, “three”, “four” and “five” in them, so I used
that as a search query. You may need to adapt your query to match the
contents of your database:

>>> from app.search import add_to_index, remove_from_index, query_index

>>> for post in Post.query.all():

... add_to_index('posts', post)

>>> query_index('posts', 'one two three four five', 1, 100)

([15, 13, 12, 4, 11, 8, 14], 7)

>>> query_index('posts', 'one two three four five', 1, 3)

([15, 13, 12], 7)

>>> query_index('posts', 'one two three four five', 2, 3)

([4, 11, 8], 7)

>>> query_index('posts', 'one two three four five', 3, 3)

([14], 7)

The query that I issued returned seven results. When I asked for page
1 with 100 items per page I get all seven, but then the next three
examples shows how I can paginate the results in a way that is very
similar to what I did for Flask-SQLAlchemy, with the exception that
the results come as a list of IDs instead of SQLAlchemy objects.

If you want to keep things clean, delete the posts index after you are
doing experimenting with it:

>>> app.elasticsearch.indices.delete('posts')

16.6 Integrating Searches
with SQLAlchemy
The solution that I showed you in the previous section is decent, but it
still has a couple of problems. The most obvious problem is that
results come as a list of numeric IDs. This is highly inconvenient, I
need SQLAlchemy models so that I can pass them down to templates
for rendering, and I need a way to replace that list of numbers with the
corresponding models from the database. The second problem is that
this solution requires the application to explicitly issue indexing calls
as posts are added or removed, which is not terrible, but less than
ideal, since a bug that causes a missed indexing call when making a
change on the SQLAlchemy side is not going to be easily detected, the
two databases will get out of sync more and more each time the bug
occurs and you will probably not notice for a while. A better solution
would be for these calls to be triggered automatically as changes are
made on the SQLAlchemy database.

The problem of replacing the IDs with objects can be addressed by
creating a SQLAlchemy query that reads those objects from the
database. This sounds easy in practice, but doing it efficiently with a
single query is actually a bit tricky to implement.

For the problem of triggering the indexing changes automatically, I
decided to drive updates to the Elasticsearch index from SQLAlchemy
events. SQLAlchemy provides a large list of events that applications
can be notified about. For example, each time a session is committed,
I can have a function in the application invoked by SQLAlchemy, and
in that function I can apply the same updates that were made on the
SQLAlchemy session to the Elasticsearch index.

To implement the solutions to these two problems I’m going to write a

http://docs.sqlalchemy.org/en/latest/core/event.html

mixin class. Remember mixin classes? In Chapter 5, I added the
UserMixin class from Flask-Login to the User model, to give it some
features that were required by Flask-Login. For the search support I’m
going to define my own SearchableMixin class, that when attached to a
model, will give it the ability to automatically manage an associated
full-text index. The mixin class will act as a “glue” layer between the
SQLAlchemy and Elasticsearch worlds, providing solutions to the two
problems I stated above.

Let me show you the implementation, then I’ll go over some
interesting details. Note that this makes use of several advanced
techniques, so you will need to study this code carefully to fully
understand it.

Listing 16.5: app/models.py: SearchableMixin class.

from app.search import add_to_index, remove_from_index, query_index

class SearchableMixin(object):

 @classmethod

 def search(cls, expression, page, per_page):

 ids, total = query_index(cls.__tablename__, expression, page, per_page)

 if total == 0:

 return cls.query.filter_by(id=0), 0

 when = []

 for i in range(len(ids)):

 when.append((ids[i], i))

 return cls.query.filter(cls.id.in_(ids)).order_by(

 db.case(when, value=cls.id)), total

 @classmethod

 def before_commit(cls, session):

 session._changes = {

 'add': list(session.new),

 'update': list(session.dirty),

 'delete': list(session.deleted)

 }

 @classmethod

 def after_commit(cls, session):

 for obj in session._changes['add']:

 if isinstance(obj, SearchableMixin):

 add_to_index(obj.__tablename__, obj)

 for obj in session._changes['update']:

 if isinstance(obj, SearchableMixin):

 add_to_index(obj.__tablename__, obj)

 for obj in session._changes['delete']:

 if isinstance(obj, SearchableMixin):

 remove_from_index(obj.__tablename__, obj)

 session._changes = None

 @classmethod

 def reindex(cls):

 for obj in cls.query:

 add_to_index(cls.__tablename__, obj)

db.event.listen(db.session, 'before_commit', SearchableMixin.before_commit)

db.event.listen(db.session, 'after_commit', SearchableMixin.after_commit)

There are four functions in this mixin class, all class methods. Just as
a refresher, a class method is a special method that is associated with
the class and not a particular instance. Note how I renamed the self
argument used in regular instance methods to cls, to make it clear
that this method receives a class and not an instance as its first
argument. Once attached to the Post model for example, the search()
method above would be invoked as Post.search(), without having to
have an actual instance of class Post.

The search() class method wraps the query_index() function from
app/search.py to replace the list of object IDs with actual objects. You
can see that the first thing this function does is call query_index(),
passing cls.__tablename__ as the index name. This is going to be a
convention, all indexes will be named with the name Flask-
SQLAlchemy assigned to the relational table. The function returns the
list of result IDs, and the total number of results. The SQLAlchemy
query that retrieves the list of objects by their IDs is based on a CASE
statement from the SQL language, which needs to be used to ensure
that the results from the database come in the same order as the IDs
are given. This is important because the Elasticsearch query returns
results sorted from more to less relevant. If you want to learn more
about the way this query works, you can consult the accepted answer
to this StackOverflow question. The search() function returns the
query that replaces the list of IDs, and also passes through the total
number of search results as a second return value.

The before_commit() and after_commit() methods are going to
respond to two events from SQLAlchemy, which are triggered before
and after a commit takes place respectively. The before handler is
useful because the session hasn’t been committed yet, so I can look at
it and figure out what objects are going to be added, modified and

https://stackoverflow.com/a/6332081/904393

deleted, available as session.new, session.dirty and session.deleted
respectively. These objects are not going to be available anymore after
the session is committed, so I need to save them before the commit
takes place. I’m using a session._changes dictionary to write these
objects in a place that is going to survive the session commit, because
as soon as the session is committed I will be using them to update the
Elasticsearch index.

When the after_commit() handler is invoked, the session has been
successfully committed, so this is the proper time to make changes on
the Elasticsearch side. The session object has the _changes variable
that I added in before_commit(), so now I can iterate over the added,
modified and deleted objects, and make the corresponding calls to the
indexing functions in app/search.py for the objects that have the
SearchableMixin class.

The reindex() class method is a simple helper method that you can
use to refresh an index with all the data from the relational side. You
saw me do something similar from the Python shell session above to
do an initial load of all the posts into a test index. With this method in
place, I can issue Post.reindex() to add all the posts in the database to
the search index.

After the class definition I made two calls to SQLALchemy’s function
db.event.listen(). Note that these calls are not inside the class, but
after it. The purpose of these two statements is to set up the event
handlers that will make SQLAlchemy call the before_commit() and
after_commit() methods before and after each commit respectively.

To incorporate the SearchableMixin class into the Post model I have to
add it as a subclass, and I also need to hook up the before and after
commit events:

Listing 16.6: app/models.py: Adding the SearchableMixin class to
the Post model.

class Post(SearchableMixin, db.Model):

 # ...

Now the Post model is automatically maintaining a full-text search
index for posts. I can use the reindex() method to initialize the index
from all the posts currently in the database:

>>> Post.reindex()

And I can search posts working with SQLAlchemy models by running
Post.search(). In the following example, I ask for the first page of five
elements for my query:

>>> query, total = Post.search('one two three four five', 1, 5)

>>> total

7

>>> query.all()

[<Post five>, <Post two>, <Post one>, <Post one more>, <Post one>]

16.7 Search Form
This was very intense. The work that I’ve done above to keep things
generic touches on several advanced topics, so it may take you time to
fully understand it. But now I have a complete system to work with
natural language searches for blog posts. What I need to do now is
integrate all this functionality with the application.

A fairly standard approach for web-based searches is to have the
search term as a q argument in the query string of the URL. For
example, if you wanted to search for Python on Google, and you want
to save a couple of seconds, you can just type the following URL in
your browser’s address bar to go directly to the results:

https://www.google.com/search?q=python

Allowing searches to be completely encapsulated in a URL is nice,
because these can be shared with other people, who just by clicking on
the link have access to the search results.

This introduces a change in the way I showed you to handle web forms
in the past. I have used POST requests to submit form data for all the
forms the application has so far, but to implement searches as above,
the form submission will have to go as a GET request, which is the
request method that is used when you type a URL in your browser or
click a link. Another interesting difference is that the search form is
going to be in the navigation bar, so it needs to be present in all pages
of the application.

Here is the search form class, with just the q text field:

Listing 16.7: app/main/forms.py: Search form.

from flask import request

class SearchForm(FlaskForm):

 q = StringField(_l('Search'), validators=[DataRequired()])

 def __init__(self, *args, **kwargs):

 if 'formdata' not in kwargs:

 kwargs['formdata'] = request.args

 if 'csrf_enabled' not in kwargs:

 kwargs['csrf_enabled'] = False

 super(SearchForm, self).__init__(*args, **kwargs)

The q field does not require any explanation, as it is similar to other
text fields I’ve used in the past. For this form, I decided not to have a
submit button. For a form that has a text field, the browser will
submit the form when you press Enter with the focus on the field, so a
button is not needed. I have also added a __init__ constructor
function, which provides values for the formdata and csrf_enabled
arguments if they are not provided by the caller. The formdata
argument determines from where Flask-WTF gets form submissions.
The default is to use request.form, which is where Flask puts form
values that are submitted via POST request. Forms that are submitted
via GET request get have the field values in the query string, so I need
to point Flask-WTF at request.args, which is where Flask writes the
query string arguments. And as you remember, forms have CSRF
protection added by default, with the inclusion of a CSRF token that is
added to the form via the form.hidden_tag() construct in templates.
For clickable search links to work, CSRF needs to be disabled, so I’m
setting csrf_enabled to False so that Flask-WTF knows that it needs to
bypass CSRF validation for this form.

Since I’m going to need to have this form visible in all pages, I need to
create an instance of the SearchForm class regardless of the page the
user is viewing. The only requirement is that the user is logged in,
because for anonymous users I am not currently showing any content.
Instead of creating a form object in every route, and then passing the
form to all the templates, I’m going to show you a very useful trick that
eliminates duplication of code when you need to implement a feature
across the entire application. I already used a before_request handler
before, back in Chapter 6, to record the time of last visit for each user.
What I’m going to do is create my search form in that same function,

but with a twist:

Listing 16.8: app/main/routes.py: Instantiate the search form in
the before_request handler.

from flask import g

from app.main.forms import SearchForm

@bp.before_app_request

def before_request():

 if current_user.is_authenticated:

 current_user.last_seen = datetime.utcnow()

 db.session.commit()

 g.search_form = SearchForm()

 g.locale = str(get_locale())

Here I create an instance of the search form class when I have an
authenticated user. But of course, I need this form object to persist
until it can be rendered at the end of the request, so I need to store it
somewhere. That somewhere is going to be the g container, provided
by Flask. This g variable provided by Flask is a place where the
application can store data that needs to persist through the life of a
request. Here I’m storing the form in g.search_form, so then when the
before request handler ends and Flask invokes the view function that
handles the requested URL, the g object is going to be the same, and
will still have the form attached to it. It’s important to note that this g
variable is specific to each request and each client, so even if your web
server is handling multiple requests at a time for different clients, you
can still rely on g to work as private storage for each request,
independently of what goes on in other requests that are handled
concurrently.

The next step is to render the form to the page. I said above that I
wanted this form in all pages, so what makes more sense is to render it
as part of the navigation bar. This is, in fact, simple, because
templates can also see the data stored in the g variable, so I don’t need
to worry about adding the form as an explicit template argument in all
the render_template() calls in the application. Here is how I can
render the form in the base template:

Listing 16.9: app/templates/base.html: Render the search form in
the navigation bar.

 ...

 <div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">

 <ul class="nav navbar-nav">

 ... home and explore links ...

 {% if g.search_form %}

 <form class="navbar-form navbar-left" method="get"

 action="{{ url_for('main.search') }}">

 <div class="form-group">

 {{ g.search_form.q(size=20, class='form-control',

 placeholder=g.search_form.q.label.text) }}

 </div>

 </form>

 {% endif %}

 ...

The form is rendered only if g.search_form is defined. This check is
necessary because some pages, such as error pages, may not have it
defined. This form is slightly different than the ones I did previously.
I’m setting its method attribute to get, because I want the form data to
be submitted on the query string with a GET request. Also, the other
forms I created had the action attribute empty, because they were
submitted to the same page that rendered the form. This form is
special because it appears in all pages, so I need to tell it explicitly
where it needs to be submitted, which is a new route that is specifically
dedicated to handling searches.

16.8 Search View Function
The last bit of functionality to complete the search feature is the view
function that receives the search form submission. This view function
is going to be attached to the /search route, so that you can send a
search request with a http://localhost:5000/search?q=search-words,
just like Google.

Listing 16.10: app/main/routes.py: Search view function.

@bp.route('/search')

@login_required

def search():

 if not g.search_form.validate():

 return redirect(url_for('main.explore'))

 page = request.args.get('page', 1, type=int)

 posts, total = Post.search(g.search_form.q.data, page,

 current_app.config['POSTS_PER_PAGE'])

 next_url = url_for('main.search', q=g.search_form.q.data, page=page + 1) \

 if total > page * current_app.config['POSTS_PER_PAGE'] else None

 prev_url = url_for('main.search', q=g.search_form.q.data, page=page - 1) \

 if page > 1 else None

 return render_template('search.html', title=_('Search'), posts=posts,

 next_url=next_url, prev_url=prev_url)

You have seen that in the other forms I used the
form.validate_on_submit() method to check if the form submission
was valid. Unfortunately that method only works for forms submitted
via POST request, so for this form I need to use form.validate() which
just validates field values, without checking how the data was
submitted. If the validation fails, it is because the user submitted an
empty search form, so in that case I just redirect to the explore page,
which shows all blog posts.

The Post.search() method from my SearchableMixin class is used to
obtain the list of search results. The pagination is handled in a very
similar way to that of the index and explore pages, but generating the
next and previous links is a little bit trickier without the help of the

Pagination object from Flask-SQLAlchemy. This is where the total
number of results passed as a second return value from Post.search()
is useful.

Once the page of search results and pagination links are calculated, all
that is left is to render a template with all this data. I could have
figured out a way to reuse the index.html template to display search
results, but given that there are a few differences I decided to create a
dedicated search.html template that is dedicated to show search
results, taking advantage of the _post.html sub-template to render the
search results:

Listing 16.11: app/templates/search.html: Search results template.

{% extends "base.html" %}

{% block app_content %}

 <h1>{{ _('Search Results') }}</h1>

 {% for post in posts %}

 {% include '_post.html' %}

 {% endfor %}

 <nav aria-label="...">

 <ul class="pager">

 <li class="previous{% if not prev_url %} disabled{% endif %}">

 ←

 {{ _('Previous results') }}

 <li class="next{% if not next_url %} disabled{% endif %}">

 {{ _('Next results') }}

 →

 </nav>

{% endblock %}

If the rendering logic for the previous and next links gets a bit
confusing it might help to review the Bootstrap documentation for the
pagination component.

https://getbootstrap.com/docs/3.3/components/#pagination

What do you think? This was an intense chapter, where I presented
some fairly advanced techniques. Some of the concepts in this chapter
may take some time to sink in. The most important take away from
this chapter is that if you want to use a different search engine than
Elasticsearch, all you need to do is re-implement the three functions in
app/search.py. The other important benefit of going through this
effort is that in the future, if I need to add search support for a
different database model, I can simply do so by adding the
SearchableMixin class to it, the __searchable__ attribute with the list of
fields to index and the SQLAlchemy event handler connections. I
think it was well worth the effort, because from now on, it is going to

be easy to deal with full-text indexes.

Chapter 17

Deployment on Linux
In this chapter I’m reaching a milestone in the life of my Microblog
application, as I’m going to discuss ways in which the application can
be deployed on a production server so that it is accessible to real users.

The topic of deployment is extensive, and for that reason it is
impossible to cover all the possible options here. This chapter is
dedicated to explore traditional hosting options, and as subjects I’m
going to use a dedicated Linux server running Ubuntu, and also the
widely popular Raspberry Pi mini-computer. I will cover other options
such as cloud and container deployments in later chapters.

The GitHub links for this chapter are: Browse, Zip, Diff.

https://github.com/miguelgrinberg/microblog/tree/v0.17
https://github.com/miguelgrinberg/microblog/archive/v0.17.zip
https://github.com/miguelgrinberg/microblog/compare/v0.16...v0.17

17.1 Traditional Hosting
When I refer to “traditional hosting”, what I mean is that the
application is installed manually or through a scripted installer on a
stock server machine. The process involves installing the application,
its dependencies and a production scale web server and configure the
system so that it is secure.

The first question you need to ask when you are about to deploy your
own project is where to find a server. These days there are many
economic hosting services. For example, for $5 per month, Digital
Ocean, Linode, or Amazon Lightsail will rent you a virtualized Linux
server in which to run your deployment experiments (Linode and
Digital Ocean provision their entry level servers with 1GB of RAM,
while Amazon provides only 512MB). If you prefer to practice
deployments without spending any money, then Vagrant and
VirtualBox are two tools that combined allow you to create a virtual
server similar to the paid ones on your own computer.

As far as operating system choices, from a technical point of view, this
application can be deployed on any of the major operating systems, a
list which includes a large variety of open-source Linux and BSD
distributions, and the commercial OS X and Microsoft Windows
(though OS X is a hybrid open-source/commercial option as it is based
on Darwin, an open-source BSD derivative).

Since OS X and Windows are desktop operating systems that are not
optimized to work as servers, I’m going to discard those as candidates.
The choice between a Linux or a BSD operating system is largely based
on preference, so I’m going to pick the most popular of the two, which
is Linux. As far as Linux distributions, once again I’m going to choose
by popularity and go with Ubuntu.

https://www.digitalocean.com/
https://www.linode.com/
https://amazonlightsail.com/
https://www.vagrantup.com/
https://www.virtualbox.org/

17.2 Creating an Ubuntu
Server
If you are interested in doing this deployment along with me, you
obviously need a server to work on. I’m going to recommend two
options for you to acquire a server, one paid and one free. If you are
willing to spend a little bit of money, you can get an account at Digital
Ocean, Linode or Amazon Lightsail and create a Ubuntu 16.04 virtual
server. You should use the smallest server option, which at the time
I’m writing this, costs $5 per month for all three providers. The cost is
prorated to the number of hours that you have the server up, so if you
create the server, play with it for a few hours and then delete it, you
would be paying just cents.

The free alternative is based on a virtual machine that you can run on
your own computer. To use this option, install Vagrant and VirtualBox
on your machine, and then create a file named Vagrantfile to describe
the specs of your VM with the following contents:

Listing 17.1: Vagrantfile: Vagrant configuration.

Vagrant.configure("2") do |config|

 config.vm.box = "ubuntu/xenial64"

 config.vm.network "private_network", ip: "192.168.33.10"

 config.vm.provider "virtualbox" do |vb|

 vb.memory = "1024"

 end

end

This file configures a Ubuntu 16.04 server with 1GB of RAM, which
you will be able to access from the host computer at IP address
192.168.33.10. To create the server, run the following command:

$ vagrant up

https://www.vagrantup.com/
https://www.virtualbox.org/

Consult the Vagrant command-line documentation to learn about
other options to manage your virtual server.

https://www.vagrantup.com/docs/cli/

17.3 Using a SSH Client
Your server is headless, so you are not going to have a desktop on it
like you have on your own computer. You are going to connect to your
server through a SSH client and work on it through the command-
line. If you are using Linux or Mac OS X, you likely have OpenSSH
already installed. If you are using Microsoft Windows, Cygwin, Git,
and the Windows Subsystem for Linux provide OpenSSH, so you can
install any of these options.

If you are using a virtual server from a third-party provider, when you
created the server you were given an IP address for it. You can open a
terminal session with your brand new server with the following
command:

$ ssh root@<server-ip-address>

You will be prompted to enter a password. Depending on the service,
the password may have been automatically generated and shown to
you after you created the server, or you may have given the option to
choose your own password.

If you are using a Vagrant VM, you can open a terminal session using
the command:

$ vagrant ssh

If you are using Windows and have a Vagrant VM, note that you will
need to run the above command from a shell that can invoke the ssh
command from OpenSSH.

http://www.openssh.org/
https://www.cygwin.com/
https://git-scm.com/
https://msdn.microsoft.com/en-us/commandline/wsl/about

17.4 Password-less Logins
If you are using a Vagrant VM, you can skip this section, since your
VM is properly configured to use a non-root account named ubuntu,
without password automatically by Vagrant.

If you are using a virtual server, it is recommended that you create a
regular user account to do your deployment work, and configure this
account to log you in without using a password, which at first may
seem like a bad idea, but you’ll see that it is not only more convenient
but also more secure.

I’m going to create a user account named ubuntu (you can use a
different name if you prefer). To create this user account, log in to
your server’s root account using the ssh instructions from the previous
section, and then type the following commands to create the user, give
it sudo powers, and finally switch to it:

$ adduser --gecos "" ubuntu

$ usermod -aG sudo ubuntu

$ su ubuntu

Now I’m going to configure this new ubuntu account to use public key
authentication so that you can log in without having to type a
password.

Leave the terminal session you have open on your server for a
moment, and start a second terminal on your local machine. If you are
using Windows, this needs to be the terminal from where you have
access to the ssh command, so it will probably be a bash or similar
prompt and not a native Windows terminal. In that terminal session,
check the contents of the /.ssh directory:

$ ls ~/.ssh

id_rsa id_rsa.pub

http://en.wikipedia.org/wiki/Public-key_cryptography

If the directory listing shows files named id_rsa and id_rsa.pub like
above, then you already have a key. If you don’t have these two files,
or if you don’t have the /.ssh directory at all, then you need to create
your SSH keypair by running the following command, also part of the
OpenSSH toolset:

$ ssh-keygen

This application will prompt you to enter a few things, for which I
recommend you accept the defaults by pressing Enter on all the
prompts. If you know what you are doing and want to do otherwise,
you certainly can.

After this command runs, you should have the two files listed above.
The file id_rsa.pub is your public key, which is a file that you will
provide to third parties as a way to identify you. The id_rsa file is your
private key, which should not be shared with anyone.

You now need to configure your public key as an authorized host in
your server. On the terminal that you opened on your own computer,
print your public key to the screen:

$ cat ~/.ssh/id_rsa.pub

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCjw....F8Xv4f/0+7WT miguel@miguelspc

This is going to be a very long sequence of characters, possibly
spanning multiple lines. You need to copy this data to the clipboard,
and then switch back to the terminal on your remote server, where you
will issue these commands to store the public key:

$ echo <paste-your-key-here> >> ~/.ssh/authorized_keys

$ chmod 600 ~/.ssh/authorized_keys

The password-less login should now be working. The idea is that ssh
on your machine will identify itself to the server by performing a
cryptographic operation that requires the private key. The server then
verifies that the operation is valid using your public key.

You can now log out of your ubuntu session, and then from your root
session, and then try to login directly to the ubuntu account with:

$ ssh ubuntu@<server-ip-address>

This time you should not have to enter a password!

17.5 Securing Your Server
To minimize the risk of your server being compromised, there are a
few steps that you can take, directed at closing a number of potential
doors through which an attacker may gain access.

The first change I’m going to make is to disable root logins via SSH.
You now have password-less access into the ubuntu account, and you
can run administrator commands from this account via sudo, so there
is really no need to expose the root account. To disable root logins,
you need to edit the /etc/ssh/sshd_config file on your server. You
probably have the vi and nano text editors installed in your server that
you can use to edit files (if you are not familiar with either one, try
nano first). You will need to prefix your editor with sudo, because the
SSH configuration is not accessible to regular users (i.e. sudo vi
/etc/ssh/sshd_config). You need to change a single line in this file:

Listing 17.2: /etc/ssh/sshd_config: Disable root logins.

PermitRootLogin no

Note that to make this change you need to locate the line that starts
with PermitRootLogin and change the value, whatever that might be in
your server, to no.

The next change is in the same file. Now I’m going to disable
password logins for all accounts. You have a password-less login set
up, so there is no need to allow passwords at all. If you feel nervous
about disabling passwords altogether you can skip this change, but for
a production server it is a really good idea, since attackers are
constantly trying random account names and passwords on all servers
hoping to get lucky. To disable password logins, change the following
line in /etc/ssh/sshd_config:

Listing 17.3: /etc/ssh/sshd_config: Disable password logins.

PasswordAuthentication no

After you are done editing the SSH configuration, the service needs to
be restarted for the changes to take effect:

$ sudo service ssh restart

The third change I’m going to make is to install a firewall. This is a
software that blocks accesses to the server on any ports that are not
explicitly enabled:

$ sudo apt-get install -y ufw

$ sudo ufw allow ssh

$ sudo ufw allow http

$ sudo ufw allow 443/tcp

$ sudo ufw --force enable

$ sudo ufw status

These commands install ufw, the Uncomplicated Firewall, and
configure it to only allow external traffic on port 22 (ssh), 80 (http)
and 443 (https). Any other ports will not be allowed.

https://wiki.ubuntu.com/UncomplicatedFirewall

17.6 Installing Base
Dependencies
If you followed my advice and provisioned your server with the
Ubuntu 16.04 release, then you have a system that comes with full
support for Python 3.5, so this is the release that I’m going to use for
the deployment.

The base Python interpreter is probably pre-installed on your server,
but there are some extra packages that are likely not, and there are
also a few other packages outside of Python that are going to be useful
in creating a robust, production-ready deployment. For a database
server, I’m going to switch from SQLite to MySQL. The postfix
package is a mail transfer agent, that I will use to send out emails. The
supervisor tool will monitor the Flask server process and automatically
restart it if it ever crashes, or also if the server is rebooted. The nginx
server is going to accept all request that come from the outside world,
and forward them to the application. Finally, I’m going to use git as
my tool of choice to download the application directly from its git
repository.

$ sudo apt-get -y update

$ sudo apt-get -y install python3 python3-venv python3-dev

$ sudo apt-get -y install mysql-server postfix supervisor nginx git

These installations run mostly unattended, but at some point while
you run the third install statement you will be prompted to choose a
root password for the MySQL service, and you’ll also be asked a couple
of questions regarding the installation of the postfix package which
you can accept with their default answers.

Note that for this deployment I’m choosing not to install
Elasticsearch. This service requires a large amount of RAM, so it is

only viable if you have a large server with more than 2GB of RAM. To
avoid problems with servers running out of memory I will leave the
search functionality out. If you have a big enough server, you can
download the official .deb package from the Elasticsearch site and
follow their installation instructions to add it to your server. Note that
the Elasticsearch package available in the Ubuntu 16.04 package
repository is too old and will not work, you need version 6.x or newer.

I should also note that the default installation of postfix is likely
insufficient for sending email in a production environment. To avoid
spam and malicious emails, many servers require the sender server to
identify itself through security extensions, which means at the very
least you have to have a domain name associated with your server. If
you want to learn how to fully configure an email server so that it
passes standard security tests, see the following Digital Ocean guides:

Postfix Configuration
Adding an SPF Record
DKIM Installation and Configuration

https://elastic.co
http://do.co/2FhdIes
http://do.co/2Ff8ksk
http://do.co/2HW2oTD

17.7 Installing the
Application
Now I’m going to use git to download the Microblog source code from
my GitHub repository. I recommend that you read git for beginners if
you are not familiar with git source control.

To download the application to the server, make sure you are in the
ubuntu user’s home directory and then run:

$ git clone https://github.com/miguelgrinberg/microblog

$ cd microblog

$ git checkout v0.17

This installs the code on your server, and syncs it to this chapter. If
you are keeping your version of this tutorial’s code on your own git
repository, you can change the repository URL to yours, and in that
case you can skip the git checkout command.

Now I need to create a virtual environment and populate it with all the
package dependencies, which I conveniently saved to the
requirements.txt file in Chapter 15:

$ python3 -m venv venv

$ source venv/bin/activate

(venv) $ pip install -r requirements.txt

In addition to the common requirements in requirements.txt, I’m
going to use two packages that are specific to this production
deployment, so they are not included in the requirements file. The
gunicorn package is a production web server for Python applications.
The pymysql package contains the MySQL driver that enables
SQLAlchemy to work with MySQL databases:

(venv) $ pip install gunicorn pymysql

http://ryanflorence.com/git-for-beginners/

I need to create a .env file, with all the needed environment variables:

Listing 17.4: /home/ubuntu/microblog/.env: Environment
configuration.

SECRET_KEY=52cb883e323b48d78a0a36e8e951ba4a

MAIL_SERVER=localhost

MAIL_PORT=25

DATABASE_URL=mysql+pymysql://microblog:<db-password>@localhost:3306/microblog

MS_TRANSLATOR_KEY=<your-translator-key-here>

This .env file is mostly similar to the example I shown in Chapter 15,
but I have used a random string for SECRET_KEY. To generate this
random string I used the following command:

python3 -c "import uuid; print(uuid.uuid4().hex)"

For the DATABASE_URL variable I defined a MySQL URL. I will show you
how to configure the database in the next section.

I need to set the FLASK_APP environment variable to the entry point of
the application to enable the flask command to work, but this variable
is needed before the .env file is parsed so it needs to be set manually.
To avoid having to set it every time, I’m going to add it at the bottom
of the /.profile file for the ubuntu account, so that it is set
automatically every time I log in:

$ echo "export FLASK_APP=microblog.py" >> ~/.profile

If you log out and back in, now FLASK_APP will be set for you. You can
confirm that it is set by running flask –help. If the help message
shows the translate command added by the application, then you
know the application was found.

And now that the flask command is functional, I can compile the
language translations:

(venv) $ flask translate compile

17.8 Setting Up MySQL
The sqlite database that I’ve used during development is great for
simple applications, but when deploying a full blown web server that
can potentially need to handle multiple requests at a time, it is better
to use a more robust database. For that reason I’m going to set up a
MySQL database that I will call microblog.

To manage the database server I’m going to use the mysql command,
which should be already installed on your server:

$ mysql -u root -p

Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 6

Server version: 5.7.19-0ubuntu0.16.04.1 (Ubuntu)

Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql>

Note that you will need to type the MySQL root password that you
selected when you installed MySQL to gain access to the MySQL
command prompt.

These are the commands that create a new database called microblog,
and a user with the same name that has full access to it:

mysql> create database microblog character set utf8 collate utf8_bin;

mysql> create user 'microblog'@'localhost' identified by '<db-password>';

mysql> grant all privileges on microblog.* to 'microblog'@'localhost';

mysql> flush privileges;

mysql> quit;

You will need to replace <db-password> with a password of your

choice. This is going to be the password for the microblog database
user, so it is a good idea to not use the same password you selected for
the root user. The password for the microblog user needs to match the
password that you included in the DATABASE_URL variable in the .env
file.

If your database configuration is correct, you should now be able to
run the database migrations that create all the tables:

(venv) $ flask db upgrade

Make sure the above command completes without producing any
errors before you continue.

17.9 Setting Up Gunicorn
and Supervisor
When you run the server with flask run, you are using a web server
that comes with Flask. This server is very useful during development,
but it isn’t a good choice to use for a production server because it
wasn’t built with performance and robustness in mind. Instead of the
Flask development server, for this deployment I decided to use
gunicorn, which is also a pure Python web server, but unlike Flask’s, it
is a robust production server that is used by a lot of people, while at
the same time it is very easy to use.

To start Microblog under gunicorn you can use the following
command:

(venv) $ gunicorn -b localhost:8000 -w 4 microblog:app

The -b option tells gunicorn where to listen for requests, which I set to
the internal network interface at port 8000. It is usually a good idea to
run Python web applications without external access, and then have a
very fast web server that is optimized to serve static files accepting all
requests from clients. This fast web server will serve static files
directly, and forward any requests intended for the application to the
internal server. I will show you how to set up nginx as the public
facing server in the next section.

The -w option configures how many workers gunicorn will run.
Having four workers allows the application to handle up to four clients
concurrently, which for a web application is usually enough to handle
a decent amount of clients, since not all of them are constantly
requesting content. Depending on the amount of RAM your server
has, you may need to adjust the number of workers so that you don’t

http://gunicorn.org/

run out of memory.

The microblog:app argument tells gunicorn how to load the application
instance. The name before the colon is the module that contains the
application, and the name after the colon is the name of this
application.

While gunicorn is very simple to set up, running the server from the
command-line is actually not a good solution for a production server.
What I want to do is have the server running in the background, and
have it under constant monitoring, because if for any reason the server
crashes and exits, I want to make sure a new server is automatically
started to take its place. And I also want to make sure that if the
machine is rebooted, the server runs automatically upon startup,
without me having to log in and start things up myself. I’m going to
use the supervisor package that I installed above to do this.

The supervisor utility uses configuration files that tell it what
programs to monitor and how to restart them when necessary.
Configuration files must be stored in /etc/supervisor/conf.d. Here is a
configuration file for Microblog, which I’m going to call
microblog.conf:

Listing 17.5: /etc/supervisor/conf.d/microblog.conf: Supervisor
configuration.

[program:microblog]

command=/home/ubuntu/microblog/venv/bin/gunicorn -b localhost:8000 -w 4 microblog:app

directory=/home/ubuntu/microblog

user=ubuntu

autostart=true

autorestart=true

stopasgroup=true

killasgroup=true

The command, directory and user settings tell supervisor how to run the
application. The autostart and autorestart set up automatic restarts
due to the computer starting up, or crashes. The stopasgroup and
killasgroup options ensure that when supervisor needs to stop the
application to restart it, it also reaches the child processes of the top-

http://supervisord.org/

level gunicorn process.

After you write this configuration file, you have to reload the
supervisor service for it to be imported:

$ sudo supervisorctl reload

And just like that, the gunicorn web server should be up and running
and monitored!

17.10 Setting Up Nginx
The microblog application server powered by gunicorn is now running
privately port 8000. What I need to do now to expose the application
to the outside world is to enable my public facing web server on ports
80 and 443, the two ports that I opened on the firewall to handle the
web traffic of the application.

I want this to be a secure deployment, so I’m going to configure port
80 to forward all traffic to port 443, which is going to be encrypted. So
I’m going to start by creating an SSL certificate. For now I’m going to
create a self-signed SSL certificate, which is okay for testing
everything but not good for a real deployment because web browsers
will warn users that the certificate was not issued by a trusted
certificate authority. The command to create the SSL certificate for
microblog is:

$ mkdir certs

$ openssl req -new -newkey rsa:4096 -days 365 -nodes -x509 \

 -keyout certs/key.pem -out certs/cert.pem

The command is going to ask you for some information about your
application and yourself. This is information that will be included in
the SSL certificate, and that web browsers will show to users if they
request to see it. The result of the command above is going to be two
files called key.pem and cert.pem, which I placed in a certs sub-
directory of the Microblog root directory.

To have a web site served by nginx, you need to write a configuration
file for it. In most nginx installations this file needs to be in the
/etc/nginx/sites-enabled directory. Nginx installs a test site in this
location that I don’t really need, so I’m going to start by removing it:

$ sudo rm /etc/nginx/sites-enabled/default

Below you can see the nginx configuration file for Microblog, which
goes in /etc/nginx/sites-enabled/microblog:

Listing 17.6: /etc/nginx/sites-enabled/microblog: Nginx
configuration.

server {

 # listen on port 80 (http)

 listen 80;

 server_name _;

 location / {

 # redirect any requests to the same URL but on https

 return 301 https://$host$request_uri;

 }

}

server {

 # listen on port 443 (https)

 listen 443 ssl;

 server_name _;

 # location of the self-signed SSL certificate

 ssl_certificate /home/ubuntu/microblog/certs/cert.pem;

 ssl_certificate_key /home/ubuntu/microblog/certs/key.pem;

 # write access and error logs to /var/log

 access_log /var/log/microblog_access.log;

 error_log /var/log/microblog_error.log;

 location / {

 # forward application requests to the gunicorn server

 proxy_pass http://localhost:8000;

 proxy_redirect off;

 proxy_set_header Host $host;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 }

 location /static {

 # handle static files directly, without forwarding to the application

 alias /home/ubuntu/microblog/app/static;

 expires 30d;

 }

}

The nginx configuration is far from trivial, but I’ve added some
comments so that at least you know what each section does. If you
want to have information about a specific directive, consult the nginx
official documentation.

After you add this file, you need to tell nginx to reload the
configuration to activate it:

https://nginx.org/en/docs/

$ sudo service nginx reload

And now the application should be deployed. In your web browser,
you can type the the IP address of your server (or 192.168.33.10 if you
are using a Vagrant VM) and that will connect to the application.
Because you are using a self-signed certificate, you will get a warning
from the web browser, which you will have to dismiss.

After you complete a deployment with the above instructions for your
own projects, I strongly suggest that you replace the self-signed
certificate with a real one, so that the browser does not warn your
users about your site. For this you will first need to purchase a domain
name and configure it to point to your server’s IP address. Once you
have a domain, you can request a free Let’s Encrypt SSL certificate. I
have written a detailed article on my blog on how to Run your Flask
application over HTTPS.

https://letsencrypt.org/
https://blog.miguelgrinberg.com/post/running-your-flask-application-over-https

17.11 Deploying Application
Updates
The last topic I want to discuss regarding the Linux based deployment
is how to handle application upgrades. The application source code is
installed in the server through git, so whenever you want to upgrade
your application to the latest version, you can just run git pull to
download the new commits that were made since the previous
deployment.

But of course, downloading the new version of the code is not going to
cause an upgrade. The server processes that are currently running will
continue to run with the old code, which was already read and stored
in memory. To trigger an upgrade you have to stop the current server
and start a new one, to force all the code to be read again.

Doing an upgrade is in general more complicated than just restarting
the server. You may need to apply database migrations, or compile
new language translations, so in reality, the process to perform an
upgrade involves a sequence of commands:

(venv) $ git pull # download the new version

(venv) $ sudo supervisorctl stop microblog # stop the current server

(venv) $ flask db upgrade # upgrade the database

(venv) $ flask translate compile # upgrade the translations

(venv) $ sudo supervisorctl start microblog # start a new server

17.12 Raspberry Pi Hosting
The Raspberry Pi is a low-cost revolutionary little Linux computer that
has very low power consumption, so it is the perfect device to host a
home based web server that can be online 24/7 without tying up your
desktop computer or laptop. There are several Linux distributions
that run on the Raspberry Pi. My choice is Raspbian, which is the
official distribution from the Raspberry Pi Foundation.

To prepare the Raspberry Pi, I’m going to install a fresh Raspbian
release. I will be using the September 2017 version of Raspbian
Stretch Lite, but by the time you read this there is likely going to be
newer versions out, so check the official downloads page to get the
most current release.

The Raspbian image needs to be installed on an SD card, which you
then plug into the Raspberry Pi so that it can boot with it. Instructions
to copy the Raspbian image to an SD card from Windows, Mac OS X
and Linux are available on the Raspberry Pi site.

When you boot your Raspberry Pi for the first time, do it while
connected to a keyboard and a monitor, so that you can do the set up.
At the very least you should enable SSH, so that you can log in from
your computer to perform the deployment tasks more comfortably.

Like Ubuntu, Raspbian is a derivative of Debian, so the instructions
above for Ubuntu Linux for the most part work just as well for the
Raspberry Pi. However, you may decide to skip some of the steps if
you are planning on running a small application on your home
network, without external access. For example, you may not need the
firewall, or the password-less logins. And you may want to use SQLite
instead of MySQL in such a small computer. You may opt to not use
nginx, and just have the gunicorn server listening directly to requests
from clients. You will probably want just one gunicorn worker. The

http://www.raspberrypi.org/
http://www.raspbian.org/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/documentation/installation/installing-images/

supervisor service is useful in ensuring the application is always up, so
my recommendation is that you also use it on the Raspberry Pi.

Chapter 18

Deployment on Heroku
In the previous article I showed you the “traditional” way to host a
Python application, and I gave you two actual examples of deployment
to Linux based servers. If you are not used to manage a Linux system,
you probably thought that the amount of effort that needs to be put
into the task was big, and that surely there must be an easier way.

In this chapter I’m going to show you a completely different approach,
in which you rely on a third-party cloud hosting provider to perform
most of the administration tasks, freeing you to spend more time
working on your application.

Many cloud hosting providers offer a managed platform on which
applications can run. All you need to provide to have your application
deployed on these platforms is the actual application, because the
hardware, operating system, scripting language interpreters, database,
etc. are all managed by the service. This type of service is called
Platform as a Service, or PaaS.

Sounds too good to be true, right?

I will look at deploying Microblog to Heroku, a popular cloud hosting
service that is also very friendly for Python applications. I picked
Heroku not only because it is popular, but also because it has a free
service level that will allow you to follow me and do a complete
deployment without spending any money.

The GitHub links for this chapter are: Browse, Zip, Diff.

https://en.wikipedia.org/wiki/Platform_as_a_service
http://heroku.com
https://github.com/miguelgrinberg/microblog/tree/v0.18
https://github.com/miguelgrinberg/microblog/archive/v0.18.zip
https://github.com/miguelgrinberg/microblog/compare/v0.17...v0.18

18.1 Hosting on Heroku
Heroku was one of the first platform as a service providers. It started
as a hosting option for Ruby based applications, but then grew to
support many other languages like Java, Node.js and of course Python.

Deploying a web application to Heroku is done through the git version
control tool, so you must have your application in a git repository.
Heroku looks for a file called Procfile in the application’s root
directory for instructions on how to start the application. For Python
projects, Heroku also expects a requirements.txt file that lists all the
module dependencies that need to be installed. After the application is
uploaded to Heroku’s servers through git, you are essentially done and
just need to wait a few seconds until the application is online. It’s
really that simple.

The different service tiers Heroku offers allow you to choose how
much computing power and time you get for your application, so as
your user base grows you will need to buy more units of computing,
which Heroku calls “dynos”.

Ready to try Heroku? Let’s get started!

18.2 Creating Heroku
account
Before you can deploy to Heroku you need to have an account with
them. So visit heroku.com and create a free account. Once you have
an account and log in to Heroku, you will have access to a dashboard,
where all your applications are listed.

https://id.heroku.com/signup

18.3 Installing the Heroku
CLI
Heroku provides a command-line tool for interacting with their service
called Heroku CLI, available for Windows, Mac OS X and Linux. The
documentation includes installation instructions for all the supported
platforms. Go ahead and install it on your system if you plan on
deploying the application to test the service.

The first thing you should do once the CLI is installed is login to your
Heroku account:

$ heroku login

Heroku CLI will ask you to enter your email address and your account
password. Your authenticated status will be remembered in
subsequent commands.

https://devcenter.heroku.com/articles/heroku-cli

18.4 Setting Up Git
The git tool is core to the deployment of applications to Heroku, so
you must install it on your system if you don’t have it yet. If you don’t
have a package available for your operating system, you can visit the
git site to download an installer.

There are a lot of reasons why using git for your projects makes
sense. If you plan to deploy to Heroku, you have one more, because to
deploy to Heroku, your application must be in a git repository. If you
are going to do a test deployment for Microblog, you can clone the
application from GitHub:

$ git clone https://github.com/miguelgrinberg/microblog

$ cd microblog

$ git checkout v0.18

The git checkout command selects the specific commit that has the
application at the point in its history that corresponds to this chapter.

If you prefer to work with your own code instead of mine, you can
transform your own project into a git repository by running git init
. on the top-level directory (note the period after init, which tells git
that you want to create the repository in the current directory).

https://git-scm.com/

18.5 Creating a Heroku
Application
To register a new application with Heroku, you use the apps:create
command from the root directory of the application, passing the
application name as the only argument:

$ heroku apps:create flask-microblog

Creating flask-microblog... done

http://flask-microblog.herokuapp.com/ | https://git.heroku.com/flask-microblog.git

Heroku requires that applications have a unique name. The name
flask-microblog that I used above is not going to be available to you
because I’m using it, so you will need to pick a different name for your
deployment.

The output of this command will include the URL that Heroku
assigned to the application, and also its git repository. Your local git
repository will be configured with an extra remote, called heroku. You
can verify that it exists with the git remote command:

$ git remote -v

heroku https://git.heroku.com/flask-microblog.git (fetch)

heroku https://git.heroku.com/flask-microblog.git (push)

Depending on how you created your git repository, the output of the
above command could also include another remote called origin.

18.6 The Ephemeral File
System
The Heroku platform is different to other deployment platforms in
that it features an ephemeral file system that runs on a virtualized
platform. What does that mean? It means that at any time, Heroku
can reset the virtual server on which your server runs back to a clean
state. You cannot assume that any data that you save to the file system
will persist, and in fact, Heroku recycles servers very often.

Working under these conditions introduces some problems for my
application, which uses a few files:

The default SQLite database engine writes data in a disk file
Logs for the application are also written to the file system
The compiled language translation repositories are also written to
local files

The following sections will address these three areas.

18.7 Working with a Heroku
Postgres Database
To address the first problem, I’m going to switch to a different
database engine. In Chapter 17 you saw me use a MySQL database to
add robustness to the Ubuntu deployment. Heroku has a database
offering of its own, based on the Postgres database, so I’m going to
switch to that to avoid the file-based SQLite.

Databases for Heroku applications are provisioned with the same
Heroku CLI. In this case I’m going to create a database on the free tier:

$ heroku addons:add heroku-postgresql:hobby-dev

Creating heroku-postgresql:hobby-dev on flask-microblog... free

Database has been created and is available

 ! This database is empty. If upgrading, you can transfer

 ! data from another database with pg:copy

Created postgresql-parallel-56076 as DATABASE_URL

Use heroku addons:docs heroku-postgresql to view documentation

The URL for the newly created database is stored in a DATABASE_URL
environment variable that will be available when the application runs.
This is very convenient, because the application already looks for the
database URL in that variable.

18.8 Logging to stdout
Heroku expects applications to log directly to stdout. Anything the
application prints to the standard output is saved and returned when
you use the heroku logs command. So I’m going to add a
configuration variable that indicates if I need to log to stdout or to a
file like I’ve been doing. Here is the change in the configuration:

Listing 18.1: config.py: Option to log to stdout.

class Config(object):

 # ...

 LOG_TO_STDOUT = os.environ.get('LOG_TO_STDOUT')

Then in the application factory function I can check this configuration
to know how to configure the application’s logger:

Listing 18.2: app/__init__.py: Log to stdout or file.

def create_app(config_class=Config):

 # ...

 if not app.debug and not app.testing:

 # ...

 if app.config['LOG_TO_STDOUT']:

 stream_handler = logging.StreamHandler()

 stream_handler.setLevel(logging.INFO)

 app.logger.addHandler(stream_handler)

 else:

 if not os.path.exists('logs'):

 os.mkdir('logs')

 file_handler = RotatingFileHandler('logs/microblog.log',

 maxBytes=10240, backupCount=10)

 file_handler.setFormatter(logging.Formatter(

 '%(asctime)s %(levelname)s: %(message)s '

 '[in %(pathname)s:%(lineno)d]'))

 file_handler.setLevel(logging.INFO)

 app.logger.addHandler(file_handler)

 app.logger.setLevel(logging.INFO)

 app.logger.info('Microblog startup')

 return app

So now I need to set the LOG_TO_STDOUT environment variable when the
application runs in Heroku, but not in other configurations. The
Heroku CLI makes this easy, as it provides an option to set
environment variables to be used at runtime:

$ heroku config:set LOG_TO_STDOUT=1

Setting LOG_TO_STDOUT and restarting flask-microblog... done, v4

LOG_TO_STDOUT: 1

18.9 Compiled Translations
The third aspect of Microblog that relies on local files is the compiled
language translation files. The more direct option to ensure those files
never disappear from the ephemeral file system is to add the compiled
language files to the git repository, so that they become part of the
initial state of the application once it is deployed to Heroku.

A more elegant option, in my opinion, is to include the flask
translate compile command in the start up command given to
Heroku, so that any time the server is restarted those files are
compiled again. I’m going to go with this option, since I know that my
start up procedure is going to require more than one command
anyway, since I also need to run the database migrations. So for now, I
will set this problem aside, and will revisit it later when I write the
Procfile.

18.10 Elasticsearch Hosting
Elasticsearch is one of the many services that can be added to a
Heroku project, but unlike Postgres, this is not a service provided by
Heroku, but by third parties that partner with Heroku to provide add-
ons. At the time I’m writing this, there are three different providers of
an integrated Elasticsearch service.

Before you configure Elasticsearch, be aware that Heroku requires
your account to have a credit card on file before any third party add-on
is installed, even if you stay within their free tiers. If you prefer not to
provide your credit card to Heroku, then skip this section. You will
still be able to deploy the application, but the search functionality is
not going to work.

Out of the Elasticsearch options that are available as add-ons, I
decided to try SearchBox, which comes with a free starter plan. To add
SearchBox to your account, you have to run the following command
while being logged in to Heroku:

$ heroku addons:create searchbox:starter

This command will deploy an Elasticsearch service and leave the
connection URL for the service in a SEARCHBOX_URL environment
variable associated with your application. Once more keep in mind
that this command will fail unless you add your credit card to your
Heroku account.

If you recall from Chapter 16, my application looks for the
Elasticsearch connection URL in the ELASTICSEARCH_URL variable, so I
need to add this variable and set it to the connection URL assigned by
SearchBox:

$ heroku config:get SEARCHBOX_URL

<your-elasticsearch-url>

https://elements.heroku.com/addons/searchbox

$ heroku config:set ELASTICSEARCH_URL=<your-elasticsearch-url>

Here I first asked Heroku to print the value of SEARCHBOX_URL, and then
I added a new environment variable with the name ELASTICSEARCH_URL
set to that same value.

18.11 Updates to
Requirements
Heroku expects the dependencies to be in the requirements.txt file,
exactly like I defined it in Chapter 15. But for the application to run on
Heroku I need to add two new dependencies to this file.

Heroku does not provide a web server of its own. Instead, it expects
the application to start its own web server on the port number given in
the environment variable $PORT. Since the Flask development web
server is not robust enough to use for production, I’m going to use
gunicorn again, the server recommended by Heroku for Python
applications.

The application will also be connecting to a Postgres database, and for
that SQLAlchemy requires the psycopg2 package to be installed.

Both gunicorn and psycopg2 need to be added to the requirements.txt
file.

http://gunicorn.org/

18.12 The Procfile
Heroku needs to know how to execute the application, and for that it
uses a file named Procfile in the root directory of the application. The
format of this file is simple, each line includes a process name, a colon,
and then the command that starts the process. The most common
type of application that runs on Heroku is a web application, and for
this type of application the process name should be web. Below you
can see a Procfile for Microblog:

Listing 18.3: Procfile: Heroku Procfile.

web: flask db upgrade; flask translate compile; gunicorn microblog:app

Here I defined the command to start the web application as three
commands in sequence. First I run a database migration upgrade,
then I compile the language translations, and finally I start the server.

Because the first two sub-commands are based on the flask command,
I need to add the FLASK_APP environment variable:

$ heroku config:set FLASK_APP=microblog.py

Setting FLASK_APP and restarting flask-microblog... done, v4

FLASK_APP: microblog.py

The application also relies on other environment variables, such as
those that configure the email server or the token for the live
translations. Those need to be added with more heroku config:set
commands.

The gunicorn command is simpler than what I used for the Ubuntu
deployment, because this server has a very good integration with the
Heroku environment. For example, the $PORT environment variable is
honored by default, and instead of using the -w option to set the

number of workers, heroku recommends adding a variable called
WEB_CONCURRENCY, which gunicorn uses when -w is not provided, giving
you the flexibility to control the number of workers without having to
modify the Procfile.

18.13 Deploying the
Application
All the preparatory steps are complete, so now it is time to run the
deployment. To upload the application to Heroku’s servers for
deployment, the git push command is used. This is similar to how you
push changes in your local git repository to GitHub or other remote git
server.

And now I have reached the most interesting part, where I push the
application to our Heroku hosting account. This is actually pretty
simple, I just have to use git to push the application to the master
branch of the Heroku git repository. There are a couple of variations
on how to do this, depending on how you created your git repository.
If you are using my v0.18 code, then you need to create a branch based
on this tag, and push it as the remote master branch, as follows:

$ git checkout -b deploy

$ git push heroku deploy:master

If instead, you are working with your own repository, then your code is
already in a master branch, so you first need to make sure that your
changes are committed:

$ git commit -a -m "heroku deployment changes"

And then you can run the following to start the deployment:

$ git push heroku master

Regardless of how you push the branch, you should see the following
output from Heroku:

$ git push heroku deploy:master

Counting objects: 247, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (238/238), done.

Writing objects: 100% (247/247), 53.26 KiB | 3.80 MiB/s, done.

Total 247 (delta 136), reused 3 (delta 0)

remote: Compressing source files... done.

remote: Building source:

remote:

remote: -----> Python app detected

remote: -----> Installing python-3.6.2

remote: -----> Installing pip

remote: -----> Installing requirements with pip

...

remote:

remote: -----> Discovering process types

remote: Procfile declares types -> web

remote:

remote: -----> Compressing...

remote: Done: 57M

remote: -----> Launching...

remote: Released v5

remote: https://flask-microblog.herokuapp.com/ deployed to Heroku

remote:

remote: Verifying deploy... done.

To https://git.heroku.com/flask-microblog.git

 * [new branch] deploy -> master

The label heroku that we used in the git push command is the remote
that was automatically added by the Heroku CLI when the application
was created. The deploy:master argument means that I’m pushing the
code from the local repository referenced by the deploy branch to the
master branch on the Heroku repository. When you work with your
own projects, you will likely be pushing with the command git push
heroku master, which pushes your local master branch. Because of the
way this project is structured, I’m pushing a branch that is not master,
but the destination branch on the Heroku side always needs to be
master as that is the only branch that Heroku accepts for deployment.

And that is it, the application should now be deployed at the URL that
you were given in the output of the command that created the
application. In my case, the URL was https://flask-
microblog.herokuapp.com, so that is what I need to type to access the
application.

If you want to see the log entries for the running application, use the
heroku logs command. This can be useful if for any reason the
application fails to start. If there were any errors, those will be in the

logs.

18.14 Deploying Application
Updates
To deploy a new version of the application, you just need to run a new
git push command with the new code. This will repeat the
deployment process, take the old deployment offline, and then replace
it with the new code. The commands in the Procfile will run again as
part of the new deployment, so any new database migrations or
translations will be updated during the process.

Chapter 19

Deployment on Docker
Containers
In Chapter 17 you learned about traditional deployments, in which you
have to take care of every little aspect of the server configuration.
Then in Chapter 18 I took you to the other extreme when I introduced
you to Heroku, a service that takes complete control of the
configuration and deployment tasks, allowing you to fully concentrate
on your application. In this chapter you are going to learn about a
third application deployment strategy based on containers, more
particularly on the Docker container platform. This third option sits
somewhere in between the other two in terms of the amount of
deployment work needed on your part.

Containers are built on a lightweight virtualization technology that
allows an application, along with its dependencies and configuration
to run in complete isolation, but without the need to use a full blown
virtualization solution such as virtual machines, which need a lot more
resources and can sometimes have a significant performance
degradation in comparison to the host. A system configured as a
container host can execute many containers, all of them sharing the
host’s kernel and direct access to the host’s hardware. This is in
contrast to virtual machines, which have to emulate a complete
system, including CPU, disk, other hardware, kernel, etc.

In spite of having to share the kernel, the level of isolation in a
container is pretty high. A container has its own file system, and can
be based on an operating system that is different than the one used by
the container host. For example, you can run containers based on

https://www.docker.com/

Ubuntu Linux on a Fedora host, or vice versa. While containers are a
technology that is native to the Linux operating system, thanks to
virtualization it is also possible to run Linux containers on Windows
and Mac OS X hosts. This allows you to test your deployments on your
development system, and also incorporate containers in your
development workflow if you wish to do so.

The GitHub links for this chapter are: Browse, Zip, Diff.

https://github.com/miguelgrinberg/microblog/tree/v0.19
https://github.com/miguelgrinberg/microblog/archive/v0.19.zip
https://github.com/miguelgrinberg/microblog/compare/v0.18...v0.19

19.1 Installing Docker CE
While Docker isn’t the only container platform, it is by far the most
popular, so that’s going to be my choice. There are two editions of
Docker, a free community edition (CE) and a subscription based
enterprise edition (EE). For the purposes of this tutorial Docker CE is
perfectly adequate.

To work with Docker CE, you first have to install it on your system.
There are installers for Windows, Mac OS X and several Linux
distributions available at the Docker website. If you are working on a
Microsoft Windows system, it is important to note that Docker CE
requires Hyper-V. The installer will enable this for you if necessary,
but keep in mind that enabling Hyper-V prevents other virtualization
technologies such as VirtualBox from working.

Once Docker CE is installed on your system, you can verify that the
install was successful by typing the following command on a terminal
window or command prompt:

$ docker version

Client:

 Version: 17.09.0-ce

 API version: 1.32

 Go version: go1.8.3

 Git commit: afdb6d4

 Built: Tue Sep 26 22:40:09 2017

 OS/Arch: darwin/amd64

Server:

 Version: 17.09.0-ce

 API version: 1.32 (minimum version 1.12)

 Go version: go1.8.3

 Git commit: afdb6d4

 Built: Tue Sep 26 22:45:38 2017

 OS/Arch: linux/amd64

 Experimental: true

https://www.docker.com/community-edition

19.2 Building a Container
Image
The first step in creating a container for Microblog is to build an image
for it. A container image is a template that is used to create a
container. It contains a complete representation of the container file
system, along with various settings pertaining to networking, start up
options, etc.

The most basic way to create a container image for your application is
to start a container for the base operating system you want to use
(Ubuntu, Fedora, etc.), connect to a bash shell process running in it,
and then manually install your application, maybe following the
guidelines I presented in Chapter 17 for a traditional deployment.
After you install everything, you can take a snapshot of the container
and that becomes the image. This type of workflow is supported with
the docker command, but I’m not going to discuss it because it is not
convenient to have to manually install the application every time you
need to generate a new image.

A better approach is to generate the container image through a script.
The command that creates scripted container images is docker build.
This command reads and executes build instructions from a file called
Dockerfile, which I will need to create. The Dockerfile is basically an
installer script of sorts that executes the installation steps to get the
application deployed, plus some container specific settings.

Here is a basic Dockerfile for Microblog:

Listing 19.1: Dockerfile: Dockerfile for Microblog.

FROM python:3.6-alpine

RUN adduser -D microblog

WORKDIR /home/microblog

COPY requirements.txt requirements.txt

RUN python -m venv venv

RUN venv/bin/pip install -r requirements.txt

RUN venv/bin/pip install gunicorn

COPY app app

COPY migrations migrations

COPY microblog.py config.py boot.sh ./

RUN chmod +x boot.sh

ENV FLASK_APP microblog.py

RUN chown -R microblog:microblog ./

USER microblog

EXPOSE 5000

ENTRYPOINT ["./boot.sh"]

Each line in the Dockerfile is a command. The FROM command
specifies the base container image on which the new image will be
built. The idea is that you start from an existing image, add or change
some things, and you end up with a derived image. Images are
referenced by a name and a tag, separated by a colon. The tag is used
as a versioning mechanism, allowing a container image to provide
more than one variant. The name of my chosen image is python, which
is the official Docker image for Python. The tags for this image allow
you to specify the interpreter version and base operating system. The
3.6-alpine tag selects a Python 3.6 interpreter installed on Alpine
Linux. The Alpine Linux distribution is often used instead of more
popular ones such as Ubuntu because of its small size. You can see
what tags are available for the Python image in the Python image
repository.

The RUN command executes an arbitrary command in the context of
the container. This would be similar to you typing the command in a
shell prompt. The adduser -D microblog command creates a new user
named microblog. Most container images have root as the default
user, but it is not a good practice to run an application as root, so I
create my own user.

The WORKDIR command sets a default directory where the application is

https://hub.docker.com/r/library/python/tags/

going to be installed. When I created the microblog user above, a
home directory was created, so now I’m making that directory the
default. The new default directory is going to apply to any remaining
commands in the Dockerfile, and also later when the container is
executed.

The COPY command transfers files from your machine to the container
file system. This command takes two or more arguments, the source
and destination files or directories. The source file(s) must be relative
to the directory where the Dockerfile is located. The destination can
be an absolute path, or a path relative to the directory that was set in a
previous WORKDIR command. In this first COPY command, I’m copying
the requirements.txt file to the microblog user’s home directory in the
container file system.

Now that I have the requirements.txt file in the container, I can create
a virtual environment, using the RUN command. First I create it, and
then I install all the requirements in it. Because the requirements file
contains only generic dependencies, I then explicitly install gunicorn,
which I’m going to use as a web server. Alternatively, I could have
added gunicorn to my requirements.txt file.

The three COPY commands that follow install the application in the
container, by copying the app package, the migrations directory with
the database migrations, and the microblog.py and config.py scripts
from the top-level directory. I’m also copying a new file, boot.sh that I
will discuss below.

The RUN chmod command ensures that this new boot.sh file is correctly
set as an executable file. If you are in a Unix based file system and
your source file is already marked as executable, then the copied file
will also have the executable bit set. I added an explicit set because on
Windows it is harder to set executable bits. If you are working on Mac
OS X or Linux you probably don’t need this statement, but it does not
hurt to have it anyway.

The ENV command sets an environment variable inside the container. I
need to set FLASK_APP, which is required to use the flask command.

The RUN chown command that follows sets the owner of all the
directories and files that were stored in /home/microblog as the new
microblog user. Even though I created this user near the top of the
Dockerfile, the default user for all the commands remained root, so all
these files need to be switched to the microblog user so that this user
can work with them when the container is started.

The USER command in the next line makes this new microblog user the
default for any subsequent instructions, and also for when the
container is started.

The EXPOSE command configures the port that this container will be
using for its server. This is necessary so that Docker can configure the
network in the container appropriately. I’ve chosen the standard Flask
port 5000, but this can be any port.

Finally, the ENTRYPOINT command defines the default command that
should be executed when the container is started. This is the
command that will start the application web server. To keep things
well organized, I decided to create a separate script for this, and this is
the boot.sh file that I copied to the container earlier. Here are the
contents of this script:

Listing 19.2: boot.sh: Docker container start-up script.

#!/bin/sh

source venv/bin/activate

flask db upgrade

flask translate compile

exec gunicorn -b :5000 --access-logfile - --error-logfile - microblog:app

This is a fairly standard start up script that is fairly similar to how the
deployments in Chapter 17 and Chapter 18 were started. I activate the
virtual environment, upgrade the database though the migration
framework, compile the language translations, and finally run the
server with gunicorn.

Note the exec that precedes the gunicorn command. In a shell script,
exec triggers the process running the script to be replaced with the
command given, instead of starting it as a new process. This is

important, because Docker associates the life of the container to the
first process that runs on it. In cases like this one, where the start up
process is not the main process of the container, you need to make
sure that the main process takes the place of that first process to
ensure that the container is not terminated early by Docker.

An interesting aspect of Docker is that anything that the container
writes to stdout or stderr will be captured and stored as logs for the
container. For that reason, the –access-logfile and –error-logfile
are both configured with a -, which sends the log to standard output so
that they are stored as logs by Docker.

With the Dockerfile created, I can now build a container image:

$ docker build -t microblog:latest .

The -t argument that I’m giving to the docker build command sets the
name and tag for the new container image. The . indicates the base
directory where the container is to be built. This is the directory where
the Dockerfile is located. The build process is going to evaluate all the
commands in the Dockerfile and create the image, which will be stored
on your own machine.

You can obtain a list of the images that you have locally with the
docker images command:

$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

microblog latest 54a47d0c27cf About a minute ago 216MB

python 3.6-alpine a6beab4fa70b 3 months ago 88.7MB

This listing will include your new image, and also the base image on
which it was built. Any time you make changes to the application, you
can update the container image by running the build command again.

19.3 Starting a Container
With an image already created, you can now run the container version
of the application. This is done with the docker run command, which
usually takes a large number of arguments. I’m going to start by
showing you a basic example:

$ docker run --name microblog -d -p 8000:5000 --rm microblog:latest

021da2e1e0d390320248abf97dfbbe7b27c70fefed113d5a41bb67a68522e91c

The –name option provides a name for the new container. The -d
option tells Docker to run the container in the background. Without -
d the container runs as a foreground application, blocking your
command prompt. The -p option maps container ports to host ports.
The first port is the port on the host computer, and the one on the
right is the port inside the container. The above example exposes port
5000 in the container on port 8000 in the host, so you will access the
application on 8000, even though internally the container is using
5000. The –rm option will delete the container once it is terminated.
While this isn’t required, containers that finish or are interrupted are
usually not needed anymore, so they can be automatically deleted.
The last argument is the container image name and tag to use for the
container. After you run the above command, you can access the
application at http://localhost:8000.

The output of docker run is the ID assigned to the new container. This
is a long hexadecimal string, that you can use whenever you need to
refer to the container in subsequent commands. In fact, only the first
few characters are necessary, enough to make the ID unique.

If you want to see what containers are running, you can use the docker
ps command:

$ docker ps

CONTAINER ID IMAGE COMMAND PORTS NAMES

021da2e1e0d3 microblog:latest "./boot.sh" 0.0.0.0:8000->5000/tcp microblog

You can see that even the docker ps command shortens container IDs.
If you now want to stop the container, you can use docker stop:

$ docker stop 021da2e1e0d3

021da2e1e0d3

If you recall, there are a number of options in the application’s
configuration that are sourced from environment variables. For
example, the Flask secret key, database URL and email server options
are all imported from environment variables. In the docker run
example above I have not worried about those, so all those
configuration options are going to use defaults.

In a more realistic example, you will be setting those environment
variables inside the container. You saw in the previous section that the
ENV command in the Dockerfile sets environment variables, and it is a
handy option for variables that are going to be static. For variables
that depend on the installation, however, it isn’t convenient to have
them as part of the build process, because you want to have a
container image that is fairly portable. If you want to give your
application to another person as a container image, you would want
that person to be able to use it as is, and not have to rebuild it with
different variables.

So build-time environment variables can be useful, but there is also a
need to have run-time environment variables that can be set via the
docker run command, and for these variables, the -e option can be
used. The following example sets a secret key and sends email through
a gmail account:

$ docker run --name microblog -d -p 8000:5000 --rm -e SECRET_KEY=my-secret-key \

 -e MAIL_SERVER=smtp.googlemail.com -e MAIL_PORT=587 -e MAIL_USE_TLS=true \

 -e MAIL_USERNAME=<your-gmail-username> -e MAIL_PASSWORD=<your-gmail-password> \

 microblog:latest

It is not uncommon for docker run command lines to be extremely
long due to having many environment variable definitions.

19.4 Using Third-Party
“Containerized” Services
The container version of Microblog is looking good, but I haven’t really
thought much about storage yet. In fact, since I haven’t set a
DATABASE_URL environment variable, the application is using the default
SQLite database, which is supported by a file on disk. What do you
think is going to happen to that SQLite file when you stop and delete
the container? The file is going to disappear!

The file system in a container is ephemeral, meaning that it goes away
when the container goes away. You can write data to the file system,
and the data is going to be there if the container needs to read it, but if
for any reason you need to recycle your container and replace it with a
new one, any data that the application saved to disk is going to be lost
forever.

A good design strategy for a container application is to make the
application containers stateless. If you have a container that has
application code and no data, you can throw it away and replace it
with a new one without any problems, the container becomes truly
disposable, which is great in terms of simplifying the deployment of
upgrades.

But of course, this means that the data must be put somewhere outside
of the application container. This is where the fantastic Docker
ecosystem comes into play. The Docker Container Registry contains a
large variety of container images. I have already told you about the
Python container image, which I’m using as a base image for my
Microblog container. In addition to that, Docker maintains images for
many other languages, databases and other services in the Docker
registry and if that isn’t enough, the registry also allows companies to

publish container images for their products, and also regular users like
you or me to publish your own images. That means that the effort to
install third party services is reduced to finding an appropriate image
in the registry, and starting it with a docker run command with proper
arguments.

So what I’m going to do now is create two additional containers, one
for a MySQL database, and another one for the Elasticsearch service,
and then I’m going to make the command line that starts the
Microblog container even longer with options that enable it to access
these two new containers.

19.4.1 Adding a MySQL Container

Like many other products and services, MySQL has public container
images available on the Docker registry. Like my own Microblog
container, MySQL relies on environment variables that need to be
passed to docker run. These configure passwords, database names
etc. While there are many MySQL images in the registry, I decided to
use one that is officially maintained by the MySQL team. You can find
detailed information about the MySQL container image in its registry
page: https://hub.docker.com/r/mysql/mysql-server/.

If you remember the laborious process to set up MySQL in Chapter 17,
you are going to appreciate Docker when you see how easy it is to
deploy MySQL. Here is the docker run command that starts a MySQL
server:

$ docker run --name mysql -d -e MYSQL_RANDOM_ROOT_PASSWORD=yes \

 -e MYSQL_DATABASE=microblog -e MYSQL_USER=microblog \

 -e MYSQL_PASSWORD=<database-password> \

 mysql/mysql-server:5.7

That is it! On any machine that you have Docker installed, you can run
the above command and you’ll get a fully installed MySQL server with
a randomly generated root password, a brand new database called
microblog, and a user with the same name that is configured with full

permissions to access the database. Note that you will need to enter a
proper password as the value for the MYSQL_PASSWORD environment
variable.

Now on the application side, I need to add a MySQL client package,
like I did for the traditional deployment on Ubuntu. I’m going to use
pymysql once again, which I can add to the Dockerfile:

Listing 19.3: Dockerfile: Add pymysql to Dockerfile.

...

RUN venv/bin/pip install gunicorn pymysql

...

Any time a change is made to the application or the Dockerfile, the
container image needs to be rebuilt:

$ docker build -t microblog:latest .

Any now I can start Microblog again, but this time with a link to the
database container so that both can communicate through the
network:

$ docker run --name microblog -d -p 8000:5000 --rm -e SECRET_KEY=my-secret-key \

 -e MAIL_SERVER=smtp.googlemail.com -e MAIL_PORT=587 -e MAIL_USE_TLS=true \

 -e MAIL_USERNAME=<your-gmail-username> -e MAIL_PASSWORD=<your-gmail-password> \

 --link mysql:dbserver \

 -e DATABASE_URL=mysql+pymysql://microblog:<database-password>@dbserver/microblog \

 microblog:latest

The –link option tells Docker to make another container accessible to
this one. The argument contains two names separated by a colon. The
first part is the name or ID of the container to link, in this case the one
named mysql that I created above. The second part defines a hostname
that can be used in this container to refer to the linked one. Here I’m
using dbserver as generic name that represents the database server.

With the link between the two containers established, I can set the
DATABASE_URL environment variable so that SQLAlchemy is directed to
use the MySQL database in the other container. The database URL is
going to use dbserver as the database hostname, microblog as the

database name and user, and the password that you selected when you
started MySQL.

One thing I noticed when I was experimenting with the MySQL
container is that it takes a few seconds for this container to be fully
running and ready to accept database connections. If you start the
MySQL container and then start the application container
immediately after, when the boot.sh script tries to run flask db
upgrade it may fail due to the database not being ready to accept
connections. To make my solution more robust, I decided to add a
retry loop in boot.sh:

Listing 19.4: boot.sh: Retry database connection.

#!/bin/sh

source venv/bin/activate

while true; do

 flask db upgrade

 if [["$?" == "0"]]; then

 break

 fi

 echo Upgrade command failed, retrying in 5 secs...

 sleep 5

done

flask translate compile

exec gunicorn -b :5000 --access-logfile - --error-logfile - microblog:app

This loop checks the exit code of the flask db upgrade command, and
if it is non-zero it assumes that something went wrong, so it waits five
seconds and then retries.

19.4.2 Adding a Elasticsearch Container

The Elasticsearch documentation for Docker shows how to run the
service as a single-node for development, and as a two-node
production-ready deployment. For now I’m going to go with the
single-node option and use the “oss” image, which only has the open
source engine. The container is started with the following command:

$ docker run --name elasticsearch -d -p 9200:9200 -p 9300:9300 --rm \

 -e "discovery.type=single-node" \

https://www.elastic.co/guide/en/elasticsearch/reference/current/docker.html

 docker.elastic.co/elasticsearch/elasticsearch-oss:7.6.2

This docker run command has many similarities with the ones I’ve
used for Microblog and MySQL, but there are a couple of interesting
differences. First, there are two -p options, which means that this
container is going to listen on two ports instead of just one. Both ports
9200 and 9300 are mapped to the same ports in the host machine.

The other difference is in the syntax used to refer to the container
image. For the images that I’ve been building locally, the syntax was
<name>:<tag>. The MySQL container uses a slightly more complete
syntax with the format <account>/<name>:<tag>, which is appropriate
to reference container images on the Docker registry. The
Elasticsearch image that I’m using follows the pattern
<registry>/<account>/<name>:<tag>, which includes the address of the
registry as the first component. This syntax is used for images that are
not hosted in the Docker registry. In this case Elasticsearch runs their
own container registry service at docker.elastic.co instead of using the
main registry maintained by Docker.

So now that I have the Elasticsearch service up and running, I can
modify the start command for my Microblog container to create a link
to it and set the Elasticsearch service URL:

$ docker run --name microblog -d -p 8000:5000 --rm -e SECRET_KEY=my-secret-key \

 -e MAIL_SERVER=smtp.googlemail.com -e MAIL_PORT=587 -e MAIL_USE_TLS=true \

 -e MAIL_USERNAME=<your-gmail-username> -e MAIL_PASSWORD=<your-gmail-password> \

 --link mysql:dbserver \

 -e DATABASE_URL=mysql+pymysql://microblog:<database-password>@dbserver/microblog \

 --link elasticsearch:elasticsearch \

 -e ELASTICSEARCH_URL=http://elasticsearch:9200 \

 microblog:latest

Before you run this command, remember to stop your previous
Microblog container if you still have it running. Also be careful in
setting the correct passwords for the database and the Elasticsearch
service in the proper places in the command.

Now you should be able to visit http://localhost:8000 and use the
search feature. If you experience any errors, you can troubleshoot
them by looking at the container logs. You’ll most likely want to see

logs for the Microblog container, where any Python stack traces will
appear:

$ docker logs microblog

19.5 The Docker Container
Registry
So now I have the complete application up and running on Docker,
using three containers, two of which come from publicly available
third-party images. If you would like to make your own container
images available to others, then you have to push them to the Docker
registry from where anybody can obtain images.

To have access to the Docker registry you need to go to
https://hub.docker.com and create an account for yourself. Make sure
you pick a username that you like, because that is going to be used in
all the images that you publish.

To be able to access your account from the command line, you need to
log in with the docker login command:

$ docker login

If you’ve been following my instructions, you now have an image
called microblog:latest stored locally on your computer. To be able to
push this image to the Docker registry, it needs to be renamed to
include the account, like the image from MySQL. This is done with the
docker tag command:

$ docker tag microblog:latest <your-docker-registry-account>/microblog:latest

If you list your images again with docker images you are now going to
see two entries for Microblog, the original one with the
microblog:latest name, and a new one that also includes your account
name. These are really two alias for the same image.

To publish your image to the Docker registry, use the docker push

command:

$ docker push <your-docker-registry-account>/microblog:latest

Now your image is publicly available and you can document how to
install it and run from the Docker registry in the same way MySQL and
others do.

19.6 Deployment of
Containerized Applications
One of the best things about having your application running in
Docker containers is that once you have the containers tested locally,
you can take them to any platform that offers Docker support. For
example, you could use the same servers I recommended in Chapter 17
from Digital Ocean, Linode or Amazon Lightsail. Even the cheapest
offering from these providers is sufficient to run Docker with a handful
of containers.

The Amazon Container Service (ECS) gives you the ability to create a
cluster of container hosts on which to run your containers, in a fully
integrated AWS environment, with support for scaling and load
balancing, plus the option to use a private container registry for your
container images.

Finally, a container orchestration platform such as Kubernetes
provides an even greater level of automation and convenience, by
allowing you to describe your multi-container deployments in simple
text files in YAML format, with load balancing, scaling, secure
management of secrets and rolling upgrades and rollbacks.

https://aws.amazon.com/ecs/
https://kubernetes.io/

Chapter 20

Some JavaScript Magic
Nowadays it is impossible to build a web application that doesn’t use
at least a little bit of JavaScript. As I’m sure you know, the reason is
that JavaScript is the only language that runs natively in web
browsers. In Chapter 14 you saw me add a simple JavaScript enabled
link in a Flask template to provide real-time language translations of
blog posts. In this chapter I’m going to dig deeper into the topic and
show you another useful JavaScript trick to make the application more
interesting and engaging to users.

A common user interface pattern for social sites in which users can
interact with each other is to show a quick summary of a user in a
popup panel when you hover over the user’s name, anywhere it
appears on the page. If you have never paid attention to this, go to
Twitter, Facebook, LinkedIn, or any other major social network, and
when you see a username, just leave your mouse pointer on top of it
for a couple of seconds to see the popup appear. This chapter is going
to be dedicated to building that feature for Microblog, of which you
can see a preview below:

The GitHub links for this chapter are: Browse, Zip, Diff.

https://github.com/miguelgrinberg/microblog/tree/v0.20
https://github.com/miguelgrinberg/microblog/archive/v0.20.zip
https://github.com/miguelgrinberg/microblog/compare/v0.19...v0.20

20.1 Server-side Support
Before we delve into the client-side, let’s get the little bit of server work
that is necessary to support these user popups out of the way. The
contents of the user popup are going to be returned by a new route,
which is going to be a simplified version of the existing user profile
route. Here is the view function:

Listing 20.1: app/main/routes.py: User popup view function.

@bp.route('/user/<username>/popup')

@login_required

def user_popup(username):

 user = User.query.filter_by(username=username).first_or_404()

 return render_template('user_popup.html', user=user)

This route is going to be attached to the /user/<username>/popup
URL, and will simply load the requested user and then render a
template with it. The template is a shorter version of the one used for
the user profile page:

Listing 20.2: app/templates/user_popup.html: User popup
template.

<table class="table">

 <tr>

 <td width="64" style="border: 0px;"></td>

 <td style="border: 0px;">

 <p>

 {{ user.username }}

 </p>

 <small>

 {% if user.about_me %}<p>{{ user.about_me }}</p>{% endif %}

 {% if user.last_seen %}

 <p>{{ _('Last seen on') }}:

 {{ moment(user.last_seen).format('lll') }}</p>

 {% endif %}

 <p>{{ _('%(count)d followers', count=user.followers.count()) }},

 {{ _('%(count)d following', count=user.followed.count()) }}</p>

 {% if user != current_user %}

 {% if not current_user.is_following(user) %}

 {{ _('Follow') }}

 {% else %}

 {{ _('Unfollow') }}

 {% endif %}

 {% endif %}

 </small>

 </td>

 </tr>

</table>

The JavaScript code that I will write in the following sections will
invoke this route when the user hovers the mouse pointer over a
username. In response the server will return the HTML content for
the popup, which the client then display. When the user moves the
mouse away the popup will be removed. Sounds simple, right?

If you want to have an idea of how the popup will look, you can now
run the application, go to any user’s profile page and then append
/popup to the URL in the address bar to see a full-screen version of
the popup content.

20.2 Introduction to the
Bootstrap Popover
Component
In Chapter 11 I introduced you to the Bootstrap framework as a
convenient way to create great looking web pages. So far, I have used
only a minimal portion of this framework. Bootstrap comes bundled
with many common UI elements, all of which have demos and
examples in the Bootstrap documentation at
https://getbootstrap.com. One of these components is the Popover,
which is described in the documentation as a “small overlay of
content, for housing secondary information”. Exactly what I need!

Most bootstrap components are defined through HTML markup that
references the Bootstrap CSS definitions that add the nice styling.
Some of the most advanced ones also require JavaScript. The
standard way in which an application includes these components in a
web page is by adding the HTML in the proper place, and then for the
components that need scripting support, calling a JavaScript function
that initializes it or activates it. The popover component does require
JavaScript support.

The HTML portion to do a popover is really simple, you just need to
define the element that is going to trigger the popover to appear. In
my case, this is going to the clickable username that appears in each
blog post. The app/templates/_post.html sub-template has the
username already defined:

 {{ post.author.username }}

https://getbootstrap.com/docs/3.3/javascript/#popovers

Now according to the popover documentation, I need to invoke the
popover() JavaScript function on each of the links like the one above
that appear on the page, and this will initialize the popup. The
initialization call accepts a number of options that configure the
popup, including options that pass the content that you want
displayed in the popup, what method to use to trigger the popup to
appear or disappear (a click, hovering over the element, etc.), if the
content is plain text or HTML, and a few more options that you can
see in the documentation page. Unfortunately, after reading this
information I ended up with more questions than answers, because
this component does not appear to be designed to work in the way I
need it to. The following is a list of problems I need to solve to
implement this feature:

There will be many username links in the page, one for each blog
post displayed. I need to have a way to find all these links from
JavaScript after the page is rendered, so that I can then initialize
them as popovers.
The popover examples in the Bootstrap documentation all provide
the content of the popover as a data-content attribute added to
the target HTML element, so when the hover event is triggered, all
Bootstrap needs to do is display the popup. That is really
inconvenient for me, because I want to make an Ajax call to the
server to get the content, and only when the server’s response is
received I want the popup to appear.
When using the “hover” mode, the popup will stay visible for as
long as you keep the mouse pointer within the target element.
When you move the mouse away, the popup will go away. This
has the ugly side effect that if the user wants to move the mouse
pointer into the popup itself, the popup will disappear. I will need
to figure out a way to extend the hover behavior to also include
the popup, so that the user can move into the popup and, for
example, click on a link there.

It is actually not that uncommon when working with browser based
applications that things get complicated really fast. You have to think

very specifically in terms of how the DOM elements interact with each
other and make them behave in a way that gives the user a good
experience.

20.3 Executing a Function
On Page Load
It is clear that I’m going to need to run some JavaScript code as soon
as each page loads. The function that I’m going to run will search for
all the links to usernames in the page, and configure those with a
popover component from Bootstrap.

The jQuery JavaScript library is loaded as a dependency of Bootstrap,
so I’m going to take advantage of it. When using jQuery, you can
register a function to run when the page is loaded by wrapping it
inside a $(...). I can add this in the app/templates/base.html
template, so that this runs on every page of the application:

Listing 20.3: app/templates/base.html: Run function after page
load.

...

<script>

 // ...

 $(function() {

 // write start up code here

 });

</script>

As you see, I have added my start up function inside the <script>
element in which I defined the translate() function in Chapter 14.

20.4 Finding DOM Elements
with Selectors
My first problem is to create a JavaScript function that finds all the
user links in the page. This function is going to run when the page
finishes loading, and when complete, will configure the hovering and
popup behavior for all of them. For now I’m going to concentrate in
finding the links.

If you recall from Chapter 14, the HTML elements that were involved
in the live translations had unique IDs. For example, a post with
ID=123 had a id="post123" attribute added. Then using the jQuery,
the expression $(’#post123’) was used in JavaScript to locate this
element in the DOM. The $() function is extremely powerful and has a
fairly sophisticated query language to search for DOM elements that is
based on CSS Selectors.

The selector that I used for the translation feature was designed to find
one specific element that had a unique identifier set as an id attribute.
Another option to identify elements is by using the class attribute,
which can be assigned to multiple elements in the page. For example,
I could mark all the user links with a class="user_popup", and then I
could get the list of links from JavaScript with $(’.user_popup’) (in
CSS selectors, the # prefix searches by ID, while the . prefix searches
by class). The return value in this case would be a collection of all the
elements that have the class.

https://api.jquery.com/category/selectors/

20.5 Popovers and the DOM
By playing with the popover examples on the Bootstrap
documentation and inspecting the DOM in the browser’s debugger, I
determined that Bootstrap creates the popover component as a sibling
of the target element in the DOM. As I mentioned above, that affects
the behavior of the hover event, which will trigger a “mouse out” as
soon as the user moves the mouse away from the <a> link and into the
popup itself.

A trick that I can use to extend the hover event to include the popover,
is to make the popover a child of the target element, that way the
hover event is inherited. Looking through the popover options in the
documentation, this can be done by passing a parent element in the
container option.

Making the popover a child of the hovered element would work well
for buttons, or general <div> or based elements, but in my case,
the target for the popover is going to be an <a> element that displays
the clickable link of a username. The problem with making the
popover a child of a <a> element is that the popover will then acquire
the link behavior of the <a> parent. The end result would be
something like this:

 username

 <div> ... popover elements here ... </div>

To avoid the popover being inside the <a> element, I’m going to use is
another trick. I’m going to wrap the <a> element inside a
element, and then associate the hover event and the popover with the
. The resulting structure would be:

 username

 <div> ... popover elements here ... </div>

The <div> and elements are invisible, so they are great elements
to use to help organize and structure your DOM. The <div> element is
a block element, sort of like a paragraph in the HTML document, while
the element is an inline element, which would compare to a
word. For this case I decided to go with the element, since the
<a> element that I’m wrapping is also an inline element.

So I’m going to go ahead and refactor my app/templates/_post.html
sub-template to include the element:

Listing 20.4: app/templates/_post.html: User popup template.

...

 {% set user_link %}

 <a href="{{ url_for('main.user', username=post.author.username) }}"

 {{ post.author.username }}

 {% endset %}

...

If you are wondering where the popover HTML elements are, the good
news is that I don’t have to worry about that. When I get to call the
popover() initialization function on the elements I just created,
the Bootstrap framework will dynamically insert the popup
component for me.

20.6 Hover Events
As I mentioned above, the hover behavior used by the popover
component from Bootstrap is not flexible enough to accommodate my
needs, but if you look at the documentation for the trigger option,
“hover’ is just one of the possible values. The one that caught my eye
was the “manual” mode, in which the popover can be displayed or
removed manually by making JavaScript calls. This mode will give me
the freedom to implement the hover logic myself, so I’m going to use
that option and implement my own hover event handlers that work the
way I need them to.

So my next step is to attach a “hover” event to all the links in the page.
Using jQuery, a hover event can be attached to any HTML element by
calling element.hover(handlerIn, handlerOut). If this function is
called on a collection of elements, jQuery conveniently attaches the
event to all of them. The two arguments are two functions, which are
invoked when the user moves the mouse pointer into and out of the
target element respectively.

Listing 20.5: app/templates/base.html: Hover event.

 $(function() {

 $('.user_popup').hover(

 function(event) {

 // mouse in event handler

 var elem = $(event.currentTarget);

 },

 function(event) {

 // mouse out event handler

 var elem = $(event.currentTarget);

 }

)

 });

The event argument is the event object, which contains useful
information. In this case, I’m extracting the element that was the

target of the event using the event.currentTarget.

The browser dispatches the hover event immediately after the mouse
enters the affected element. In the case of a popup, you want to
activate only after waiting a short period of time where the mouse
stays on the element, so that when the mouse pointer briefly passes
over the element but doesn’t stay on it there is no popups flashing.
Since the event does not come with support for a delay, this is another
thing that I’m going to need to implement myself. So I’m going to add
a one second timer to the “mouse in” event handler:

Listing 20.6: app/templates/base.html: Hover delay.

 $(function() {

 var timer = null;

 $('.user_popup').hover(

 function(event) {

 // mouse in event handler

 var elem = $(event.currentTarget);

 timer = setTimeout(function() {

 timer = null;

 // popup logic goes here

 }, 1000);

 },

 function(event) {

 // mouse out event handler

 var elem = $(event.currentTarget);

 if (timer) {

 clearTimeout(timer);

 timer = null;

 }

 }

)

 });

The setTimeout() function is available in the browser environment. It
takes two arguments, a function and a time in milliseconds. The effect
of setTimeout() is that the function is invoked after the given delay. So
I added a function that for now is empty, which will be invoked one
second after the hover event is dispatched. Thanks to closures in the
JavaScript language, this function can access variables that were
defined in an outer scope, such as elem.

I’m storing the timer object in a timer variable that I have defined
outside of the hover() call, to make the timer object accessible also to

the “mouse out” handler. The reason I need this is, once again, to
make for a good user experience. If the user moves the mouse pointer
into one of these user links and stays on it for, say, half a second before
moving it away, I do not want that timer to still go off and invoke the
function that will display the popup. So my mouse out event handler
checks if there is an active timer object, and if there is one, it cancels it.

20.7 Ajax Requests
Ajax requests are not a new topic, as I have introduced this topic back
in Chapter 14 as part of the live language translation feature. When
using jQuery, the $.ajax() function sends an asynchronous request to
the server.

The request that I’m going to send to the server will have the
/user/<username>/popup URL, which I added to the application at
the start of this chapter. The response from this request is going to
contain the HTML that I need to insert in the popup.

My immediate problem regarding this request is to know what is the
value of username that I need to include in the URL. The mouse in
event handler function is generic, it’s going to run for all the user links
that are found in the page, so the function needs to determine the
username from its context.

The elem variable contains the target element from the hover event,
which is the element that wraps the <a> element. To extract the
username, I can navigate the DOM starting from the , moving to
the first child, which is the <a> element, and then extracting the text
from it, which is the username that I need to use in my URL. With
jQuery’s DOM traversal functions, this is actually easy:

elem.first().text().trim()

The first() function applied to a DOM node returns its first child.
The text() function returns the text contents of a node. This function
doesn’t do any trimming of the text, so for example, if you have the <a>
in one line, the text in the following line, and the in another line,
text() will return all the whitespace that surrounds the text. To
eliminate all that whitespace and leave just the text, I use the trim()

JavaScript function.

And that is all the information I need to be able to issue the request to
the server:

Listing 20.7: app/templates/base.html: XHR request.

 $(function() {

 var timer = null;

 var xhr = null;

 $('.user_popup').hover(

 function(event) {

 // mouse in event handler

 var elem = $(event.currentTarget);

 timer = setTimeout(function() {

 timer = null;

 xhr = $.ajax(

 '/user/' + elem.first().text().trim() + '/popup').done(

 function(data) {

 xhr = null

 // create and display popup here

 }

);

 }, 1000);

 },

 function(event) {

 // mouse out event handler

 var elem = $(event.currentTarget);

 if (timer) {

 clearTimeout(timer);

 timer = null;

 }

 else if (xhr) {

 xhr.abort();

 xhr = null;

 }

 else {

 // destroy popup here

 }

 }

)

 });

Here I defined a new variable in the outer scope, xhr. This variable is
going to hold the asynchronous request object, which I initialize from
a call to $.ajax(). Unfortunately when building URLs directly in the
JavaScript side I cannot use the url_for() from Flask, so in this case I
have to concatenate the URL parts explicitly.

The $.ajax() call returns a promise, which is this special JavaScript
object that represents the asynchronous operation. I can attach a

completion callback by adding .done(function), so then my callback
function will be invoked once the request is complete. The callback
function will receive the response as an argument, which you can see I
named data in the code above. This is going to be the HTML content
that I’m going to put in the popover.

But before we get to the popover, there is one more detail related to
giving the user a good experience that needs to be taken care of. Recall
that I added logic in the “mouse out” event handler function to cancel
the one second timeout if the user moved the mouse pointer out of the
. The same idea needs to be applied to the asynchronous
request, so I have added a second clause to abort my xhr request object
if it exists.

20.8 Popover Creation and
Destruction
So finally I can create my popover component, using the data
argument that was passed to me in the Ajax callback function:

Listing 20.8: app/templates/base.html: Display popover.

 function(data) {

 xhr = null;

 elem.popover({

 trigger: 'manual',

 html: true,

 animation: false,

 container: elem,

 content: data

 }).popover('show');

 flask_moment_render_all();

 }

The actual creation of the popup is very simple, the popover() function
from Bootstrap does all the work required to set it up. Options for the
popover are given as an argument. I have configured this popover
with the “manual” trigger mode, HTML content, no fade animation (so
that it appears and disappears more quickly), and I have set the parent
to be the element itself, so that the hover behavior extends to
the popover by inheritance. Finally, I’m passing the data argument to
the Ajax callback as the content argument.

The return of the popover() call is the newly created popover
component, which for a strange reason, had another method also
called popover() that is used to display it. So I had to add a second
popover(’show’) call to make the popup appear on the page.

The content of the popup includes the “last seen” date, which is
generated through the Flask-Moment plugin as covered in Chapter 12.

As documented by the extension, when new Flask-Moment elements
are added via Ajax, the flask_moment_render_all() function needs to
be called to appropriately render those elements.

What remains now is to deal with the removal of the popup on the
mouse out event handler. This handler already has the logic to abort
the popover operation if it is interrupted by the user moving the
mouse out of the target element. If none of those conditions apply,
then that means that the popover is currently displayed and the user is
leaving the target area, so in that case, a popover(’destroy’) call to the
target element does the proper removal and cleanup.

Listing 20.9: app/templates/base.html: Destroy popover.

 function(event) {

 // mouse out event handler

 var elem = $(event.currentTarget);

 if (timer) {

 clearTimeout(timer);

 timer = null;

 }

 else if (xhr) {

 xhr.abort();

 xhr = null;

 }

 else {

 elem.popover('destroy');

 }

 }

https://github.com/miguelgrinberg/Flask-Moment#ajax-support

Chapter 21

User Notifications
In this chapter I want to continue working on improving the user
experience of my Microblog application. One aspect that applies to a
lot of applications is the presentation of alerts or notifications to the
user. Social applications show these notifications to let you know
you’ve got new mentions or private messages, usually by showing a
little badge with a number in the top navigation bar. While this is the
most obvious usage, the notification pattern can be applied to a lot of
other types of applications to inform the user that something requires
their attention.

But to show you the techniques involved in building user notifications,
I needed to extend Microblog with a feature that can benefit from
them, so in the first part of this chapter I’m going to build a user
messaging system that allows any user to send a private message to
another user. This is actually simpler than it sounds, and it will be a
good refresher on core Flask practices and a reminder of how lean,
efficient and fun programming with Flask can be. And once the
messaging system is in place, I’m going to discuss some options to
implement a notification badge that shows a count of unread
messages.

The GitHub links for this chapter are: Browse, Zip, Diff.

https://github.com/miguelgrinberg/microblog/tree/v0.21
https://github.com/miguelgrinberg/microblog/archive/v0.21.zip
https://github.com/miguelgrinberg/microblog/compare/v0.20...v0.21

21.1 Private Messages
The private messaging feature that I’m going to implement is going to
be very simple. When you visit the profile page of a user, there will be
a link to send that user a private message. The link will take you to a
new page in which a web form takes the message. To read messages
sent to you, the navigation bar at the top of the page will have a new
“Messages” link, that will take you to a page that is similar in structure
to the index or explore pages, but instead of showing blog posts it will
show messages other users sent you.

The following sections describe the steps I took to implement this
feature.

21.1.1 Database Support for Private
Messages

The first task is to extend the database to support private messages.
Here is a new Message model:

Listing 21.1: app/models.py: Message model.

class Message(db.Model):

 id = db.Column(db.Integer, primary_key=True)

 sender_id = db.Column(db.Integer, db.ForeignKey('user.id'))

 recipient_id = db.Column(db.Integer, db.ForeignKey('user.id'))

 body = db.Column(db.String(140))

 timestamp = db.Column(db.DateTime, index=True, default=datetime.utcnow)

 def __repr__(self):

 return '<Message {}>'.format(self.body)

This model class is similar to the Post model, with the only difference
that there are two user foreign keys, one for the sender and one for the

recipient. The User model can get relationships for these two users,
plus a new field that indicates what was the last time users read their
private messages:

Listing 21.2: app/models.py: Private messages support in User
model.

class User(UserMixin, db.Model):

 # ...

 messages_sent = db.relationship('Message',

 foreign_keys='Message.sender_id',

 backref='author', lazy='dynamic')

 messages_received = db.relationship('Message',

 foreign_keys='Message.recipient_id',

 backref='recipient', lazy='dynamic')

 last_message_read_time = db.Column(db.DateTime)

 # ...

 def new_messages(self):

 last_read_time = self.last_message_read_time or datetime(1900, 1, 1)

 return Message.query.filter_by(recipient=self).filter(

 Message.timestamp > last_read_time).count()

The two relationships will return messages sent and received for a
given user, and on the Message side of the relationship will add author
and recipient back references. The reason why I used a author
backref instead of a maybe more appropriate sender is that by using
author I can then render these messages using the same logic that I
use for blog posts. The last_message_read_time field will have the last
time the user visited the messages page, and will be used to determine
if there are unread messages, which will all have a timestamp newer
than this field. The new_messages() helper method actually uses this
field to return how many unread messages the user has. By the end of
this chapter I will have this number as a nice badge in the navigation
bar at the top of the page.

That completes the database changes, so now it is time to generate a
new migration and upgrade the database with it:

(venv) $ flask db migrate -m "private messages"

(venv) $ flask db upgrade

21.1.2 Sending a Private Message

Next I’m going to work on sending messages. I’m going to need a
simple web form that accepts the message:

Listing 21.3: app/main/forms.py: Private message form class.

class MessageForm(FlaskForm):

 message = TextAreaField(_l('Message'), validators=[

 DataRequired(), Length(min=0, max=140)])

 submit = SubmitField(_l('Submit'))

And I also need the HTML template that renders this form on a web
page:

Listing 21.4: app/templates/send_message.html: Send private
message HTML template.

{% extends "base.html" %}

{% import 'bootstrap/wtf.html' as wtf %}

{% block app_content %}

 <h1>{{ _('Send Message to %(recipient)s', recipient=recipient) }}</h1>

 <div class="row">

 <div class="col-md-4">

 {{ wtf.quick_form(form) }}

 </div>

 </div>

{% endblock %}

Next I’m going to add a new /send_message/<recipient> route to
handle the actual sending of the private message:

Listing 21.5: app/main/routes.py: Send private message route.

from app.main.forms import MessageForm

from app.models import Message

...

@bp.route('/send_message/<recipient>', methods=['GET', 'POST'])

@login_required

def send_message(recipient):

 user = User.query.filter_by(username=recipient).first_or_404()

 form = MessageForm()

 if form.validate_on_submit():

 msg = Message(author=current_user, recipient=user,

 body=form.message.data)

 db.session.add(msg)

 db.session.commit()

 flash(_('Your message has been sent.'))

 return redirect(url_for('main.user', username=recipient))

 return render_template('send_message.html', title=_('Send Message'),

 form=form, recipient=recipient)

I think the logic in this view function should be mostly self-
explanatory. The action of sending a private message is simply carried
out by adding a new Message instance to the database.

The last change that ties everything together is the addition of a link to
the above route in the user profile page:

Listing 21.6: app/templates/user.html: Send private message link
in user profile page.

 {% if user != current_user %}

 <p>

 <a href="{{ url_for('main.send_message',

 recipient=user.username) }}">

 {{ _('Send private message') }}

 </p>

 {% endif %}

21.1.3 Viewing Private Messages

The second big part of this feature is the viewing of private messages.
For that I’m going to add another route at /messages that works in a
fairly similar way to the index and explore pages, including full
support for pagination:

Listing 21.7: app/main/routes.py: View messages route.

@bp.route('/messages')

@login_required

def messages():

 current_user.last_message_read_time = datetime.utcnow()

 db.session.commit()

 page = request.args.get('page', 1, type=int)

 messages = current_user.messages_received.order_by(

 Message.timestamp.desc()).paginate(

 page, current_app.config['POSTS_PER_PAGE'], False)

 next_url = url_for('main.messages', page=messages.next_num) \

 if messages.has_next else None

 prev_url = url_for('main.messages', page=messages.prev_num) \

 if messages.has_prev else None

 return render_template('messages.html', messages=messages.items,

 next_url=next_url, prev_url=prev_url)

The first thing I do in this view function is update the
User.last_message_read_time field with the current time. This is
basically marking all the messages that were sent to this user as read.
Then I’m querying the Message model for the list of messages, sorted
by timestamp from newer to older. I decided to reuse the
POSTS_PER_PAGE configuration item here since the pages with posts and
messages are going to look very much alike, but of course if the pages
were to diverge, it may make sense to add a separate configuration
variable for messages. The pagination logic is identical to what I used
for posts, so this should all be familiar to you.

The view function above ends by rendering a new
/app/templates/messages.html template file, which you can see
below:

Listing 21.8: app/templates/messages.html: View messages HTML
template.

{% extends "base.html" %}

{% block app_content %}

 <h1>{{ _('Messages') }}</h1>

 {% for post in messages %}

 {% include '_post.html' %}

 {% endfor %}

 <nav aria-label="...">

 <ul class="pager">

 <li class="previous{% if not prev_url %} disabled{% endif %}">

 ← {{ _('Newer messages') }}

 <li class="next{% if not next_url %} disabled{% endif %}">

 {{ _('Older messages') }} →

 </nav>

{% endblock %}

Here I resorted to another little trick. I noticed that Post and Message
instances have pretty much the same structure, with the exception that
Message gets an extra recipient relationship (that I don’t need to show
in the messages page, since it is always the current user). So I decided
to reuse the app/templates/_post.html sub-template to also render
private messages. For this reason, this template uses the strange for-
loop for post in messages, so that all the references to post in the
sub-template work with messages too.

To give users access to the new view function, the navigation page gets
a new “Messages” link:

Listing 21.9: app/templates/base.html: Messages link in
navigation bar.

 {% if current_user.is_anonymous %}

 ...

 {% else %}

 {{ _('Messages') }}

 ...

 {% endif %}

The feature is now complete, but as part of all these changes there
were some new texts that were added in a few places, and those need
to be incorporated into the language translations. The first step is to
update all the language catalogs:

(venv) $ flask translate update

Then each of the languages in app/translations need to have its
messages.po file updated with the new translations. You can find the
Spanish translations in the GitHub repository for this project or in the
download zip file.

https://github.com/miguelgrinberg/microblog/archive/version-0.21.zip

21.2 Static Message
Notification Badge
Now the private messages feature is implemented, but of course there
is nothing that tells a user that there are private messages waiting to
be read. The simplest implementation of a navigation bar indicator
can be rendered as part of the base template, using a Bootstrap badge
widget:

Listing 21.10: app/templates/base.html: Static message count
badge in navigation bar.

 ...

 {{ _('Messages') }}

 {% set new_messages = current_user.new_messages() %}

 {% if new_messages %}

 {{ new_messages }}

 {% endif %}

 ...

Here I’m invoking the new_messages() method I added to the User
model above directly from the template, and storing that number in a
new_messages template variable. Then if that variable is non-zero, I
just add the badge with the number next to the Messages link. Here is
how this looks on the page:

21.3 Dynamic Message
Notification Badge
The solution presented in the previous section is a decent and simple
way to show a notification, but it has the disadvantage that the badge
only appears when a new page is loaded. If the user spends a long
time reading the content on one page without clicking on any links,
new messages that come during that time will not be shown until the
user finally does click on a link and loads a new page.

To make this application more useful to my users, I want the badge to
update the count of unread messages on its own, without the user
having to click on links and load new pages. One problem with the
solution from the previous section is that the badge is only rendered to
the page when the message count at the time the page loaded was non-
zero. What’s really more convenient is to always include the badge in
the navigation bar, and mark it as hidden when the message count is
zero. This would make it easy to make the badge visible using
JavaScript:

Listing 21.11: app/templates/base.html: A JavaScript friendly
unread messages badge.

 {{ _('Messages') }}

 {% set new_messages = current_user.new_messages() %}

 <span id="message_count" class="badge"

 style="visibility: {% if new_messages %}visible

 {% else %}hidden {% endif %};">

 {{ new_messages }}

With this version of the badge, I always include it, but the visibility

CSS property is set to visible when new_messages is non-zero, or
hidden if it is zero. I also added an id attribute to the element
that represents the badge, to make it easy to address this element
using a $(’#message_count’) jQuery selector.

Next, I can code a short JavaScript function that updates this badge to
a new number:

Listing 21.12: app/templates/base.html: Static message count
badge in navigation bar.

...

{% block scripts %}

 <script>

 // ...

 function set_message_count(n) {

 $('#message_count').text(n);

 $('#message_count').css('visibility', n ? 'visible' : 'hidden');

 }

 </script>

{% endblock %}

This new set_message_count() function will set the number of
messages in the badge element, and also adjust the visibility so that
the badge is hidden when the count is 0 and visible otherwise.

21.4 Delivering
Notifications to Clients
What remains now is to add a mechanism by which the client receives
periodic updates regarding the number of unread messages the user
has. When one of these updates occur, the client will call the
set_message_count() function to make the update known to the user.

There are actually two methods for the server to deliver these updates
to the client, and as you can probably guess, both have pros and cons,
so which one to choose is largely dependent on the project. In the first
approach, the client periodically asks the server for updates by sending
an asynchronous request. The response from this request is a list of
updates, which the client can use to update different elements of the
page such as the unread message count badge. The second approach
requires a special type of connection between the client and the server
that allows the server to freely push data to the client. Note that
regardless of the approach, I want to treat notifications as generic
entities, so that I can extend this framework to support other types of
events besides the unread messages badge.

The biggest thing the first solution has is that it is easy to implement.
All I need to do is add yet another route to the application, say
/notifications, which returns a JSON list of notifications. The client
application then goes through the list of notifications and applies the
necessary changes to the page for each one. The disadvantage of this
solution is that there is going to be a delay between the actual event
and the notification for it, because the client is going to request the list
of notifications at regular intervals. For example, if the client is asking
for notifications every 10 seconds, a notification can be received up to
10 seconds late.

The second solution requires changes at the protocol level, because
HTTP does not have any provisions for a server to send data to the
client without the client asking. By far the most common way to
implement server initiated messages is by extending the server to
support WebSocket connections in addition to HTTP. WebSocket is a
protocol that unlike HTTP, establishes a permanent connection
between the server and the client. The server and the client can both
send data to the other party at any time, without the other side asking
for it. The advantage of this mechanism is that whenever an event that
is of interest to the client occurs, the server can send a notification,
without any delays. The disadvantage is that WebSocket requires a
more complicated setup than HTTP, because the server needs to
maintain a permanent connection with each and every client. Imagine
that a server that, for example, has four worker processes can typically
serve a few hundred HTTP clients, because connections in HTTP are
short lived and are constantly being recycled. The same server would
be able to handle just four WebSocket clients, which in the vast
majority of cases is going to be insufficient. It is for this limitation that
WebSocket applications are typically designed around asynchronous
servers, because these servers are more efficient at managing a large
number of workers and active connections.

The good news is that regardless of the method that you use, in the
client you will have a callback function that will be invoked with the
list of updates. So I could start with the first solution, which is much
easier to implement, and later, if I find it insufficient, migrate to a
WebSocket server, which can be configured to invoke the same client
callback. In my opinion, for this type of application the first solution is
actually acceptable. A WebSocket based implementation would be
useful for an application that requires updates to be delivered with
near zero-latency.

In case you are curious, Twitter also uses the first approach for their
navigation bar notifications. Facebook uses a variation of it called long
polling, which addresses some of the limitations of straight polling
while still using HTTP requests. Stack Overflow and Trello are two
sites that implement WebSocket for their notifications. You can find

https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/Push_technology#Long_polling

what type of background activity occurs on any site by looking in the
Network tab of the browser’s debugger.

So let’s go ahead and implement the polling solution. First, I’m going
to add a new model to keep track of notifications for all users, along
with a relationship in the user model.

Listing 21.13: app/models.py: Notification model.

import json

from time import time

...

class User(UserMixin, db.Model):

 # ...

 notifications = db.relationship('Notification', backref='user',

 lazy='dynamic')

 # ...

class Notification(db.Model):

 id = db.Column(db.Integer, primary_key=True)

 name = db.Column(db.String(128), index=True)

 user_id = db.Column(db.Integer, db.ForeignKey('user.id'))

 timestamp = db.Column(db.Float, index=True, default=time)

 payload_json = db.Column(db.Text)

 def get_data(self):

 return json.loads(str(self.payload_json))

A notification is going to have a name, an associated user, a Unix
timestamp and a payload. The timestamp gets its default value from
the time.time() function. The payload is going to be different for each
type of notification, so I’m writing it as a JSON string, as that will
allow me to write lists, dictionaries or single values such as numbers or
strings. I added the get_data() method as a convenience, so that the
caller doesn’t have to worry about the JSON deserialization.

These changes need to be included in a new database migration:

(venv) $ flask db migrate -m "notifications"

(venv) $ flask db upgrade

As a matter of convenience, I’m going to add the new Message and
Notification models to the shell context, so that when I start a shell

with the flask shell command, the model class is automatically
imported for me:

Listing 21.14: microblog.py: Add Message model to shell context.

...

from app.models import User, Post, Notification, Message

...

@app.shell_context_processor

def make_shell_context():

 return {'db': db, 'User': User, 'Post': Post, 'Message': Message,

 'Notification': Notification}

I’m also going to add a add_notification() helper method in the user
model to make it easier to work with these objects:

Listing 21.15: app/models.py: Notification model.

class User(UserMixin, db.Model):

 # ...

 def add_notification(self, name, data):

 self.notifications.filter_by(name=name).delete()

 n = Notification(name=name, payload_json=json.dumps(data), user=self)

 db.session.add(n)

 return n

This method not only adds a notification for the user to the database,
but also ensures that if a notification with the same name already
exists, it is removed first. The notification I’m going to work with is
going to be called unread_message_count. If the database already has a
notification with this name with, for example, a value of 3, whenever
the user receives a new message and the message count goes to 4 I
want to replace the old notification.

In any place where the unread message count changes, I need to call
add_notification() so that I have my notifications for the user
updated. There are two places where this changes. First, when the
user receives a new private message, in the send_message() view
function:

Listing 21.16: app/main/routes.py: Update user notification.

@bp.route('/send_message/<recipient>', methods=['GET', 'POST'])

@login_required

def send_message(recipient):

 # ...

 if form.validate_on_submit():

 # ...

 user.add_notification('unread_message_count', user.new_messages())

 db.session.commit()

 # ...

 # ...

The second place where I need to notify the user is when the user goes
to the messages page, at which point the unread count goes back to
zero:

Listing 21.17: app/main/routes.py: View messages route.

@bp.route('/messages')

@login_required

def messages():

 current_user.last_message_read_time = datetime.utcnow()

 current_user.add_notification('unread_message_count', 0)

 db.session.commit()

 # ...

Now that all the notifications for users are maintained in the database,
I can add a new route that the client can use to retrieve notifications
for the logged in user:

Listing 21.18: app/main/routes.py: Notifications view function.

from app.models import Notification

...

@bp.route('/notifications')

@login_required

def notifications():

 since = request.args.get('since', 0.0, type=float)

 notifications = current_user.notifications.filter(

 Notification.timestamp > since).order_by(Notification.timestamp.asc())

 return jsonify([{

 'name': n.name,

 'data': n.get_data(),

 'timestamp': n.timestamp

 } for n in notifications])

This is a fairly simple function that returns a JSON payload with a list
of notifications for the user. Each notification is given as a dictionary
with three elements, the notification name, the additional data that
pertains to the notification (such as the message count), and the
timestamp. The notifications are delivered in the order they were
created, from oldest to newest.

I do not want clients to get repeated notifications, so I’m giving them
the option to only request notifications since a given time. The since
option can be included in the query string of the request URL, with the
unix timestamp of the starting time, as a floating point number. Only
notifications that occurred after this time will be returned if this
argument is included.

The final piece to complete this feature is to implement the actual
polling in the client. The best place to do this is in the base template,
so that all pages automatically inherit the behavior:

Listing 21.19: app/templates/base.html: Polling for notifications.

...

{% block scripts %}

 <script>

 // ...

 {% if current_user.is_authenticated %}

 $(function() {

 var since = 0;

 setInterval(function() {

 $.ajax('{{ url_for('main.notifications') }}?since=' + since).done(

 function(notifications) {

 for (var i = 0; i < notifications.length; i++) {

 if (notifications[i].name == 'unread_message_count')

 set_message_count(notifications[i].data);

 since = notifications[i].timestamp;

 }

 }

);

 }, 10000);

 });

 {% endif %}

 </script>

This function is enclosed in a template conditional, because I want to
poll for new messages only when the user is logged in. For users that
are not logged in, this function will not be included.

You’ve already seen jQuery’s $(function() { ...}) pattern in
Chapter 20. This is how you register a function to execute after the
page loads. For this feature, what I need to do on page load is to set up
a regular timer that gets the notifications for the user. You’ve also
seen the setTimeout() JavaScript function, which runs the function
given as an argument after the specific time passes. The setInterval()
function uses the same arguments as setTimeout(), but instead of
firing the timer just once, it keeps calling the callback function at
regular intervals. In this case my interval is set to 10 seconds (given in
milliseconds), so I’m going to see the badge update with a resolution of
roughly six times per minute.

The function associated with the interval timer issues an Ajax request
for the new notifications route, and in its completion callback just
iterates over the list of notifications. When a notification with name
unread_message_count is received, the message count badge is adjusted
by calling the function defined above with the count given in the
notification.

The way I’m handling the since argument might be confusing. I start
by initializing this argument to 0. The argument is always included in
the request URL, but I can’t generate the query string using Flask’s
url_for() like I’ve done before, because url_for() runs in the server
once, and I need the since argument to dynamically update. The first
time, the request is going to be sent to /notifications?since=0, but as
soon as I receive a notification, I update since to its timestamp. This
ensures that I don’t receive duplicates, since I’m always asking to
receive notifications that occurred since the last notification I’ve seen.
It’s also important to note that I declared the since variable outside of
the interval function, because I did not want this to be a local variable,
I want the same variable to be used in all invocations.

The easiest way to try this out is to use two different browser. Log in
to Microblog on both browsers using different users. Then from one of
the browsers send one or more messages to the other user. The other
browser’s navigation bar should update to show the count of messages
that you sent in less than 10 seconds. And when you click on the

Messages link the unread message count resets back to zero.

Chapter 22

Background Jobs
This chapter is dedicated to the implementation of long or complex
processes that need to run as part of the application. These processes
cannot be executed synchronously in the context of a request because
that would block the response to the client for the duration of the task.
I briefly touched on this topic in Chapter 10, when I moved the
sending of emails to background threads to prevent the client from
having to wait during those 3-4 seconds that it takes to send an email.
While using threads for emails is acceptable, this solution does not
scale well when the processes in question are much longer. The
accepted practice is to offload long tasks to a worker process, or more
likely to a pool of them.

To justify the need for having long running tasks, I’m going to
introduce an export feature to Microblog through which users will be
able to request a data file with all their blog posts. When a user makes
use of this option, the application is going to start an export task that
will generate a JSON file with all the user’s posts, and then send it to
the user by email. All this activity is going to happen in a worker
process, and while it happens the user will see a notification showing
the percentage of completion.

The GitHub links for this chapter are: Browse, Zip, Diff.

https://github.com/miguelgrinberg/microblog/tree/v0.22
https://github.com/miguelgrinberg/microblog/archive/v0.22.zip
https://github.com/miguelgrinberg/microblog/compare/v0.21...v0.22

22.1 Introduction to Task
Queues
Task queues provide a convenient solution for the application to
request the execution of a task by a worker process. Worker processes
run independently of the application and can even be located on a
different system. The communication between the application and the
workers is done through a message queue. The application submits a
job, and then monitors its progress by interacting with the queue. The
following diagram shows a typical implementation:

The most popular task queue for Python is Celery. This is a fairly
sophisticated package that has many options and supports several
message queues. Another popular Python task queue is Redis Queue
or just RQ, which sacrifices some flexibility, such as only supporting a
Redis message queue, but in exchange it is much simpler to set up

http://www.celeryproject.org/
http://python-rq.org/
https://redis.io/

than Celery.

Both Celery and RQ are perfectly adequate to support background
tasks in a Flask application, so my choice for this application is going
to favor the simplicity of RQ. However, implementing the same
functionality with Celery should be relatively easy. If you are
interested in Celery more than RQ, you can read the Using Celery with
Flask article that I have on my blog.

https://blog.miguelgrinberg.com/post/using-celery-with-flask

22.2 Using RQ
RQ is a standard Python package, that is installed with pip:

(venv) $ pip install rq

(venv) $ pip freeze > requirements.txt

As I mentioned earlier, the communication between the application
and the RQ workers is going to be carried out in a Redis message
queue, so you need to have a Redis server running. There are many
options to get a Redis server installed and running, from one-click
installers to downloading the source code and compiling it directly on
your system. If you are using Windows, Microsoft maintains installers
here. On Linux, you can likely get it as a package through your
operating system’s package manager. Mac OS X users can run brew
install redis and then start the service manually with the redis-
server command.

You will not need to interact with Redis at all outside of just ensuring
that the service is running and accessible to RQ.

Note that RQ does not run on the Windows native Python interpreter.
If you are using the Windows platform, you can only run RQ under
Unix emulation. The two Unix emulation layers that I recommend to
Windows users are Cygwin and the Windows Subsystem for Linux
(WSL), and both are compatible with RQ.

22.2.1 Creating a Task

I’m going to show you how to run a simple task through RQ so that
you familiarize with it. A task, is nothing more than a Python
function. Here is an example task, that I’m going to put in a new

https://github.com/MicrosoftArchive/redis/releases
https://cygwin.org
https://msdn.microsoft.com/en-us/commandline/wsl/about

app/tasks.py module:

Listing 22.1: app/tasks.py: Example background task.

import time

def example(seconds):

 print('Starting task')

 for i in range(seconds):

 print(i)

 time.sleep(1)

 print('Task completed')

This task takes a number of seconds as an argument, and then waits
that amount of time, printing a counter once a second.

22.2.2 Running the RQ Worker

Now that the task is ready, a worker can be starter. This is done with
the rq worker command:

(venv) $ rq worker microblog-tasks

18:55:06 RQ worker 'rq:worker:miguelsmac.90369' started, version 0.9.1

18:55:06 Cleaning registries for queue: microblog-tasks

18:55:06

18:55:06 *** Listening on microblog-tasks...

The worker process is now connected to Redis, and watching for any
jobs that may be assigned to it on a queue named microblog-tasks. In
cases where you want to have multiple workers to have more
throughput, all you need to do is run more instances of rq worker, all
connected to the same queue. Then when a job shows up in the queue,
any of the available worker processes will pick it up. In a production
environment you will probably want to have at least as many workers
as available CPUs.

22.2.3 Executing Tasks

Now open a second terminal window and activate the virtual
environment on it. I’m going to use a shell session to kick off the
example() task in the worker:

>>> from redis import Redis

>>> import rq

>>> queue = rq.Queue('microblog-tasks', connection=Redis.from_url('redis://'))

>>> job = queue.enqueue('app.tasks.example', 23)

>>> job.get_id()

'c651de7f-21a8-4068-afd5-8b982a6f6d32'

The Queue class from RQ represents the task queue as seen from the
application side. The arguments it takes are the queue name, and a
Redis connection object, which in this case I initialize with a default
URL. If you have your Redis server running on a different host or port
number, you will need to use a different URL.

The enqueue() method on the queue is used to add a job to the queue.
The first argument is the name of the task you want to execute, given
directly as a function object, or as an import string. I find the string
option much more convenient, as that makes it unnecessary to import
the function on the application’s side. Any remaining arguments given
to enqueue() are going to be passed to the function running in the
worker.

As soon as you make the enqueue() call you are going to notice some
activity on your first terminal window, the one running the RQ
worker. You will see that the example() function is now running, and
printing the counter once per second. At the same time, your other
terminal is not blocked and you can continue evaluating expressions in
the shell. In the example above, I called the job.get_id() method to
obtain the unique identifier assigned to the task. Another interesting
expression you can try with the job object is to check if the function on
the worker has finished:

>>> job.is_finished

False

If you passed a 23 like I did in my example above, then the function is
going to run for about 23 seconds. After that time, the

job.is_finished expression will become True. Isn’t this pretty cool? I
really like the simplicity of RQ.

Once the function completes, the worker goes back to waiting for new
jobs, so you can repeat the enqueue() call with different arguments if
you want to experiment more. The data that is stored in the queue
regarding a task will stay there for some time (500 seconds by default),
but eventually will be removed. This is important, the task queue does
not preserve a history of executed jobs.

22.2.4 Reporting Task Progress

The example task I have used above is unrealistically simple.
Normally, for a long running task you will want some sort of progress
information to be made available to the application, which in turn can
show it to the user. RQ supports this by using the meta attribute of the
job object. Let me rewrite the example() task to write progress reports:

Listing 22.2: app/tasks.py: Example background task with
progress.

import time

from rq import get_current_job

def example(seconds):

 job = get_current_job()

 print('Starting task')

 for i in range(seconds):

 job.meta['progress'] = 100.0 * i / seconds

 job.save_meta()

 print(i)

 time.sleep(1)

 job.meta['progress'] = 100

 job.save_meta()

 print('Task completed')

This new version of example() uses RQ’s get_current_job() function to
get a job instance, which is similar to the one returned to the
application when it submits the task. The meta attribute of the job
object is a dictionary where the task can write any custom data that it

wants to communicate to the application. In this example, I’m writing
a progress item that represents the percentage of completion of the
task. Each time the progress is updated I call job.save_meta() to
instruct RQ to write the data to Redis, where the application can find
it.

On the application side (currently just a Python shell), I can run this
task and then monitor progress as follows:

>>> job = queue.enqueue('app.tasks.example', 23)

>>> job.meta

{}

>>> job.refresh()

>>> job.meta

{'progress': 13.043478260869565}

>>> job.refresh()

>>> job.meta

{'progress': 69.56521739130434}

>>> job.refresh()

>>> job.meta

{'progress': 100}

>>> job.is_finished

True

As you can see above, on this side the meta attribute is available to
read. The refresh() method needs to be invoked for the contents to be
updated from Redis.

22.3 Database
Representation of Tasks
For the example above it was enough to start a task and watch it run.
For a web application things get a bit more complicated, because once
one of these task is started as part of a request, that request is going to
end, and all the context for that task is going to be lost. Because I want
the application to keep track of what tasks each user is running, I need
to use a database table to maintain some state. Below you can see the
new Task model implementation:

Listing 22.3: app/models.py: Task model.

...

import redis

import rq

class User(UserMixin, db.Model):

 # ...

 tasks = db.relationship('Task', backref='user', lazy='dynamic')

...

class Task(db.Model):

 id = db.Column(db.String(36), primary_key=True)

 name = db.Column(db.String(128), index=True)

 description = db.Column(db.String(128))

 user_id = db.Column(db.Integer, db.ForeignKey('user.id'))

 complete = db.Column(db.Boolean, default=False)

 def get_rq_job(self):

 try:

 rq_job = rq.job.Job.fetch(self.id, connection=current_app.redis)

 except (redis.exceptions.RedisError, rq.exceptions.NoSuchJobError):

 return None

 return rq_job

 def get_progress(self):

 job = self.get_rq_job()

 return job.meta.get('progress', 0) if job is not None else 100

An interesting difference between this model and the previous ones is

that the id primary key field is a string, not an integer. This is because
for this model, I’m not going to rely on the database’s own primary key
generation and instead I’m going to use the job identifiers generated
by RQ.

The model is going to store the task’s fully qualified name (as passed
to RQ), a description for the task that is appropriate for showing to
users, a relationship to the user that requested the task, and a boolean
that indicates if the task completed or not. The purpose of the
complete field is to separate tasks that ended from those that are
actively running, as running tasks require special handling to show
progress updates.

The get_rq_job() method is a helper method that loads the RQ Job
instance, from a given task id, which I can get from the model. This is
done with Job.fetch(), which loads the Job instance from the data that
exists in Redis about it. The get_progress() method builds on top of
get_rq_job() and returns the progress percentage for the task. This
method has a couple of interesting assumptions. If the job id from the
model does not exist in the RQ queue, that means that the job already
finished and the data expired and was removed from the queue, so in
that case the percentage returned is 100. On the other extreme, if the
job exists, but there is no information associated with the meta
attribute, then it is safe to assume that the job is scheduled to run, but
did not get a chance to start yet, so in that situation a 0 is returned as
progress.

To apply the changes to the database schema, a new migration needs
to be generated, and then the database upgraded:

(venv) $ flask db migrate -m "tasks"

(venv) $ flask db upgrade

The new model can also be added to the shell context, to make it
accessible in shell sessions without having to import it:

Listing 22.4: microblog.py: Add Task model to shell context.

from app import create_app, db, cli

from app.models import User, Post, Message, Notification, Task

app = create_app()

cli.register(app)

@app.shell_context_processor

def make_shell_context():

 return {'db': db, 'User': User, 'Post': Post, 'Message': Message,

 'Notification': Notification, 'Task': Task}

22.4 Integrating RQ with
the Flask Application
The connection URL for the Redis service needs to be added to the
configuration:

class Config(object):

 # ...

 REDIS_URL = os.environ.get('REDIS_URL') or 'redis://'

As always, the Redis connection URL will be sourced from an
environment variable, and if the variable isn’t defined, a default URL
that assumes the service is running on the same host and in the default
port will be used.

The application factory function will be in charge of initializing Redis
and RQ:

Listing 22.5: app/__init__.py: RQ integration.

...

from redis import Redis

import rq

...

def create_app(config_class=Config):

 # ...

 app.redis = Redis.from_url(app.config['REDIS_URL'])

 app.task_queue = rq.Queue('microblog-tasks', connection=app.redis)

 # ...

The app.task_queue is going to be the queue where tasks are
submitted. Having the queue attached to the application is convenient
because anywhere in the application I can use current_app.task_queue
to access it. To make it easy for any part of the application to submit
or check on a task, I can create a few helper methods in the User

model:

Listing 22.6: app/models.py: Task helper methods in the user
model.

...

class User(UserMixin, db.Model):

 # ...

 def launch_task(self, name, description, *args, **kwargs):

 rq_job = current_app.task_queue.enqueue('app.tasks.' + name, self.id,

 *args, **kwargs)

 task = Task(id=rq_job.get_id(), name=name, description=description,

 user=self)

 db.session.add(task)

 return task

 def get_tasks_in_progress(self):

 return Task.query.filter_by(user=self, complete=False).all()

 def get_task_in_progress(self, name):

 return Task.query.filter_by(name=name, user=self,

 complete=False).first()

The launch_task() method takes care of submitting a task to the RQ
queue, along with adding it to the database. The name argument is the
function name, as defined in app/tasks.py. When submitting to RQ,
the function prepends app.tasks. to this name to build the fully
qualified function name. The description argument is a friendly
description of the task that can be presented to users. For the function
that export the blog posts, I will set the name to export_posts and the
description to Exporting posts.... The remaining arguments are
positional and keyword arguments that will be passed to the task. The
function begins by calling the queue’s enqueue() method to submit the
job. The job object that is returned contains the task id assigned by
RQ, so I can use that to create a corresponding Task object in my
database.

Note that launch_task() adds the new task object to the session, but it
does not issue a commit. In general, it is best to operate on the
database session in the higher level functions, as that allows you to
combine several updates made by lower level functions in a single
transaction. This is not a strict rule, and in fact, you are going to see

an exception where a commit is issued in a child function later in this
chapter.

The get_tasks_in_progress() method returns the complete list of
functions that are outstanding for the user. You will see later that I use
this method to include information about running tasks in the pages
that are rendered to the user.

Finally, the get_task_in_progress() is a simpler version of the
previous one that returns a specific task. I prevent users from starting
two or more tasks of the same type concurrently, so before I launch a
task, I can use this method to find out if a previous task is currently
running.

22.5 Sending Emails from
the RQ Task
This may seem like a distraction from the main topic, but I said above
that when the background export task completes, an email is going to
be sent to the user with a JSON file that contains all the posts. The
email functionality that I built in Chapter 11 needs to be extended in
two ways. First, I need to add support for file attachments, so that I
can attach a JSON file. Second, the send_email() function always
sends emails asynchronously, using a background thread. When I’m
going to send an email from a background task, which is already
asynchronous, having a second level background task based on a
thread makes little sense, so I need to support both synchronous and
asynchronous email sending.

Luckily, Flask-Mail supports attachments, so all I need to do is extend
the send_email() function to take them in an additional argument, and
then configure them in the Message object. And to optionally send the
email in the foreground, I just need to add a boolean sync argument:

Listing 22.7: app/email.py: Send emails with attachments.

...

def send_email(subject, sender, recipients, text_body, html_body,

 attachments=None, sync=False):

 msg = Message(subject, sender=sender, recipients=recipients)

 msg.body = text_body

 msg.html = html_body

 if attachments:

 for attachment in attachments:

 msg.attach(*attachment)

 if sync:

 mail.send(msg)

 else:

 Thread(target=send_async_email,

 args=(current_app._get_current_object(), msg)).start()

The attach() method of the Message class accepts three arguments that
define an attachment: the filename, the media type, and the actual file
data. The filename is just the name that the recipient will see
associated with the attachment, it does not need to be a real file. The
media type defines what type of attachment is this, which helps email
readers render it appropriately. For example, if you send image/png as
the media type, an email reader will know that the attachment is an
image, in which case it can show it as such. For the blog post data file
I’m going to use the JSON format, which uses a application/json
media type. The third and last argument is a string or byte sequence
with the contents of the attachment.

To make it simple, the attachments argument to send_email() is going
to be a list of tuples, and each tuple is going to have three elements
which correspond to the three arguments of attach(). So for each
element in this list, I need to send the tuple as arguments to attach().
In Python, if you have a list or tuple with arguments that you want to
send to a function, you can use func(*args) to have that list expanded
into the actual argument list, instead of having to use a more tedious
syntax such as func(args[0], args[1], args[2]). So for example, if
you have args = [1, ’foo’], the call will send two arguments, same as
if you called func(1, ’foo’). Without the *, the call would have a
single argument which would be the list.

As far as the synchronous sending of the email, what I needed to do is
just revert back to calling mail.send(msg) directly when sync is True.

22.6 Task Helpers
While the example() task I used above was a simple standalone
function, the function that exports blog posts is going to need some of
the functionality I have in the application, like access to the database
and the email sending function. Because this is going to run in a
separate process, I need to initialize Flask-SQLAlchemy and Flask-
Mail, which in turn need a Flask application instance from which to
get their configuration. So I’m going to add a Flask application
instance and application context at the top of the app/tasks.py
module:

Listing 22.8: app/tasks.py: Create application and context.

from app import create_app

app = create_app()

app.app_context().push()

The application is created in this module because this is the only
module that the RQ worker is going to import. When you use the
flask command, the microblog.py module in the root directory
creates the application, but the RQ worker knows nothing about that,
so it needs to create its own application instance if the task functions
need it. You have seen the app.app_context() method in a couple of
places already, pushing a context makes the application be the
“current” application instance, and this enables extensions such as
Flask-SQLAlchemy to use current_app.config to obtain their
configuration. Without the context, the current_app expression would
return an error.

I then started thinking about how I was going to report progress while
this function is running. In addition to passing progress information
through the job.meta dictionary, I’d like to push notifications to the

client, so that the completion percentage can be updated dynamically
without the user having to refresh the page. For this I’m going to use
the notification mechanisms I built in Chapter 21. The updates are
going to work in a very similar way to the unread messages badge.
When the server renders a template, it will include “static” progress
information obtained from job.meta, but then once the page is on the
client’s browser, the notifications are going to dynamically update the
percentage using notifications. Because of the notifications, updating
the progress of a running task is going to be slightly more involved
than how I did it in the previous example, so I’m going to create a
wrapper function dedicated to updating progress:

Listing 22.9: app/tasks.py: Set task progress.

from rq import get_current_job

from app import db

from app.models import Task

...

def _set_task_progress(progress):

 job = get_current_job()

 if job:

 job.meta['progress'] = progress

 job.save_meta()

 task = Task.query.get(job.get_id())

 task.user.add_notification('task_progress', {'task_id': job.get_id(),

 'progress': progress})

 if progress >= 100:

 task.complete = True

 db.session.commit()

The export task can call _set_task_progress() to record the progress
percentage. The function first writes the percentage to the job.meta
dictionary and saves it to Redis, then it loads the corresponding task
object from the database and uses task.user to push a notification to
the user that requested the task, using the existing add_notification()
method. The notification is going to be named task_progress, and the
data associated with it is going to be a dictionary with two items, the
task identifier and the progress number. Later I will add JavaScript
code to act on this new notification type.

The function checks if the progress indicates that the function has

completed, and in that case also updates the complete attribute of the
task object in the database. The database commit call ensures that the
task and the notification object added by add_notification() are both
saved immediately to the database. I needed to be very careful in how
I designed the parent task to not make any database changes, since
this commit call would write those as well.

22.7 Implementing the
Export Task
Now all the pieces are in place for me to write the export function. The
high level structure of this function is going to be as follows:

Listing 22.10: app/tasks.py: Export posts general structure.

def export_posts(user_id):

 try:

 # read user posts from database

 # send email with data to user

 except:

 # handle unexpected errors

 finally:

 # handle clean up

Why wrap the whole task in a try/except block? The application code
that exists in request handlers is protected against unexpected errors
because Flask itself catches exceptions and then handles them
observing any error handlers and logging configuration I have set up
for the application. This function, however, is going to run in a
separate process that is controlled by RQ, not Flask, so if any
unexpected errors occur the task will abort, RQ will display the error
to the console and then will go back to wait for new jobs. So basically,
unless you are watching the output of the RQ worker or logging it to a
file, you will never find out there was an error.

Let’s start looking at the sections indicated with comments above with
the simplest ones, which are the error handling and clean up at the
end:

Listing 22.11: app/tasks.py: Export posts error handling.

import sys

...

def export_posts(user_id):

 try:

 # ...

 except:

 app.logger.error('Unhandled exception', exc_info=sys.exc_info())

 finally:

 _set_task_progress(100)

Whenever an unexpected error occurs, I’m going to use the logger
object from the Flask application to log the error, along with the stack
trace, information which is provided by the sys.exc_info() call. The
nice thing about using the Flask application logger to log errors here as
well is that any logging mechanisms you have implemented for the
Flask application will be observed. For example, in Chapter 7 I
configured errors to be sent out to the administrator email address.
Just by using app.logger I also get that behavior for these errors. In
the finally clause, which will run both for errored and successful
runs, I mark the task as finished by setting the progress to 100%.

Next, I’m going to code the actual export, which simply issues a
database query and walks through the results in a loop, accumulating
them in a dictionary:

Listing 22.12: app/tasks.py: Read user posts from the database.

import time

from app.models import User, Post

...

def export_posts(user_id):

 try:

 user = User.query.get(user_id)

 _set_task_progress(0)

 data = []

 i = 0

 total_posts = user.posts.count()

 for post in user.posts.order_by(Post.timestamp.asc()):

 data.append({'body': post.body,

 'timestamp': post.timestamp.isoformat() + 'Z'})

 time.sleep(5)

 i += 1

 _set_task_progress(100 * i // total_posts)

 # send email with data to user

 except:

 # ...

 finally:

 # ...

For each post, the function is going to include a dictionary with two
elements, the post body and the time the post was written. The time is
going to be written in the ISO 8601 standard. The Python’s datetime
objects that I’m using do not store a timezone, so after I export the
time in the ISO format I add the ‘Z’, which indicates UTC.

The code gets slightly complicated due to the need to keep track of
progress. I maintain the counter i, and I need to issue an extra
database query before I enter the loop for total_posts to have the
number of posts. Using i and total_posts, each loop iteration can
update the task progress with a number from 0 to 100.

You may have noticed that I also added a time.sleep(5) call in each
loop iteration. The main reason I added the sleep is to make the
export task last longer, and be able to see the progress go up even
when the export covers just a handful of blog posts.

Below you can see the last part of the function, which sends an email
to the user with all the information collected in data as an attachment:

Listing 22.13: app/tasks.py: Email posts to user.

import json

from flask import render_template

from app.email import send_email

...

def export_posts(user_id):

 try:

 # ...

 send_email('[Microblog] Your blog posts',

 sender=app.config['ADMINS'][0], recipients=[user.email],

 text_body=render_template('email/export_posts.txt', user=user),

 html_body=render_template('email/export_posts.html', user=user),

 attachments=[('posts.json', 'application/json',

 json.dumps({'posts': data}, indent=4))],

 sync=True)

 except:

 # ...

 finally:

 # ...

https://en.wikipedia.org/wiki/ISO_8601

This is simply a call to the send_email() function. The attachment is
defined as a tuple with the three elements that are then passed to the
attach() method of Flask-Mail’s Message object. The third element in
the tuple is the attachment contents, which are generated with
Python’s json.dumps() function.

There are a pair of new templates referenced here, which provide the
contents of the email body in plain text and HTML form. Here is the
text template:

Listing 22.14: app/templates/email/export_posts.txt: Export
posts text email template.

Dear {{ user.username }},

Please find attached the archive of your posts that you requested.

Sincerely,

The Microblog Team

Here is the HTML version of the email:

Listing 22.15: app/templates/email/export_posts.html: Export
posts HTML email template.

<p>Dear {{ user.username }},</p>

<p>Please find attached the archive of your posts that you requested.</p>

<p>Sincerely,</p>

<p>The Microblog Team</p>

22.8 Export Functionality in
the Application
All the core pieces to support the background export tasks are now in
place. What remains is to hook up this functionality to the application,
so that users can place requests for their posts to be emailed to them.

Below you can see a new export_posts view function:

Listing 22.16: app/main/routes.py: Export posts route and view
function.

@bp.route('/export_posts')

@login_required

def export_posts():

 if current_user.get_task_in_progress('export_posts'):

 flash(_('An export task is currently in progress'))

 else:

 current_user.launch_task('export_posts', _('Exporting posts...'))

 db.session.commit()

 return redirect(url_for('main.user', username=current_user.username))

The function first checks if the user has an outstanding export task,
and in that case just flashes a message. It really makes no sense to
have two export tasks for the same user at the same time, so this is
prevented. I can check for this condition using the
get_task_in_progress() method I implemented earlier.

If the user isn’t already running an export, then launch_task() is
invoked to start a one. The first argument is the name of the function
that will be passed to the RQ worker, prefixed with app.tasks.. The
second argument is just a friendly text description that will be shown
to the user. Both values are written to the Task object in the database.
The function ends with a redirect to the user profile page.

Now I need to expose a link to this route that the user can access to

request the export. I think the most appropriate place to do this is in
the user profile page, where the link can only be shown when users
view their own page, right below the “Edit your profile” link:

Listing 22.17: app/templates/user.html: Export link in user profile
page.

 ...

 <p>

 {{ _('Edit your profile') }}

 </p>

 {% if not current_user.get_task_in_progress('export_posts') %}

 <p>

 {{ _('Export your posts') }}

 </p>

 ...

 {% endif %}

This link is tied to a conditional, because I don’t want it to appear
when the user already has an export in progress.

At this point the background jobs should be functional, but without
giving any feedback to the user. If you want to try this out, you can
start the application and the RQ worker as follows:

Make sure you have Redis running
In a first terminal window, start one or more instances of the RQ
worker. For this you have to use the command rq worker
microblog-tasks

In a second terminal window, start the Flask application with
flask run (remember to set FLASK_APP first)

22.9 Progress Notifications
To wrap up this feature I want to inform the user when a background
task is running, including a percentage of completion. In looking
through the Bootstrap component options, I decided to use an alert
below the navigation bar for this. Alerts are these color horizontal bars
that display information to the user. The blue alert boxes are what I’m
using to render flashed messages. Now I’m going to add a green one to
show progress status. Below you can see how that is going to look:

Listing 22.18: app/templates/base.html: Export progress alert in
base template.

...

{% block content %}

 <div class="container">

 {% if current_user.is_authenticated %}

 {% with tasks = current_user.get_tasks_in_progress() %}

 {% if tasks %}

 {% for task in tasks %}

 <div class="alert alert-success" role="alert">

 {{ task.description }}

 {{ task.get_progress() }}%

 </div>

 {% endfor %}

 {% endif %}

 {% endwith %}

 {% endif %}

 ...

{% endblock %}

...

The method to render the task alerts is almost identical to the flashed
messages. The outer conditional skips all the alert related markup
when the user is not logged in. For logged in users, I get the currently
in-progress task list by calling the get_tasks_in_progress() method I
created earlier. In the current version of the application I will only get
one result at the most, since I don’t allow more than one active export
at a time, but in the future I may want to support other types of tasks
that can coexist, so writing this in a generic way could save me time
later.

For each task I write an alert element to the page. The color of the
alert is controlled with the second CSS style, which in this case is
alert-success, while in the case of the flashed messages was alert-
info. The Bootstrap documentation includes the details on the HTML
structure for the alerts. The text of the alert includes the description
field stored in the Task model, followed by the completion percentage.

The percentage is wrapped in a element that has a id attribute.
The reason for this is that I’m going to refresh the percentage from
JavaScript when notifications are received. The id that I’m using for a
given task is constructed as the task id with -progress appended at the
end. When a notification arrives, it will contain the task id, so I can
easily locate the correct element to update with a selector for #
<task.id>-progress.

If you try the application at this point, you are going to see “static”
progress updates, each time you navigate to a new page. You will

https://getbootstrap.com/docs/3.3/components/#alerts

notice that after you start an export task, you can freely navigate to
different pages of the application, and the state of the running task is
always recalled.

To prepare for applying dynamic updates to the percentage
elements, I’m going to write a little helper function in the JavaScript
side:

Listing 22.19: app/templates/base.html: Helper function to
dynamically update task progress.

...

{% block scripts %}

 ...

 <script>

 ...

 function set_task_progress(task_id, progress) {

 $('#' + task_id + '-progress').text(progress);

 }

 </script>

 ...

{% endblock %}

This function takes a task id and a progress value, and uses jQuery to
locate the element for this task and write the new progress as
its contents. There is really no need to verify if the element exists on
the page, because jQuery will do nothing if no elements are located
with the given selector.

The notifications are already arriving to the browser because the
_set_task_progress() function in app/tasks.py calls
add_notification() each time the progress is updated. If you are
confused about how these notifications could be reaching the browser
without me having to do anything, it’s really because in Chapter 21 I
was wise to implement the notifications feature in a completely
generic way. Any notifications that are added through the
add_notification() method will be seen by the browser when it
periodically asks the server for notification updates.

But the JavaScript code that processes these notifications only
recognizes those that have a unread_message_count name, and ignores
the rest. What I need to do now is expand that function to also handle

task_progress notifications by calling the set_task_progress()
function I defined above. Here is an updated version of the loop that
processes notifications from JavaScript:

Listing 22.20: app/templates/base.html: Notification handler.

 for (var i = 0; i < notifications.length; i++) {

 switch (notifications[i].name) {

 case 'unread_message_count':

 set_message_count(notifications[i].data);

 break;

 case 'task_progress':

 set_task_progress(

 notifications[i].data.task_id,

 notifications[i].data.progress);

 break;

 }

 since = notifications[i].timestamp;

 }

Now that I need to handle two different notifications, I decided to
replace the if statement that checked for the unread_message_count
notification name with a switch statement that contains one section
for each of the notifications I now need to support. If you are not very
familiar with the “C” family of languages you may not have seen switch
statements before. These provide a convenient syntax that replaces a
long chain of if/elseif statements. This is nice because as I need to
support more notifications, I can simply keep adding them as
additional case blocks.

If you recall, the data that the RQ task attaches to the task_progress
notification is a dictionary with two elements, task_id and progress,
which are the two arguments that I need to use to invoke
set_task_progress().

If you run the application now, the progress indicator in the green
alert box is going to refresh every 10 seconds, as notifications are
delivered to the client.

Because I have introduced new translatable strings in this chapter, the
translation files need to be updated. If you are maintaining a non-
English language file, you need to use Flask-Babel to refresh your

translation files and then add new translations:

(venv) $ flask translate update

If you are using the Spanish translation, then I have done the
translation work for you, so you can just extract the
app/translations/es/LC_MESSAGES/messages.po files from the
download package for this chapter and add it to your project.

After the translations are done, you have to compile the translation
files:

(venv) $ flask translate compile

https://github.com/miguelgrinberg/microblog/archive/version-0.22.zip

22.10 Deployment
Considerations
To complete this chapter, I want to discuss how the deployment of the
application changes. To support background tasks I have added two
new components to the stack, a Redis server, and one or more RQ
workers. Obviously these need to be included in your deployment
strategy, so I’m going to briefly go over the different deployment
options I covered in previous chapters and how they are affected by
these changes.

22.10.1 Deployment on a Linux Server

If you are running your application on a Linux server, adding Redis
should be as simple as installing this package from your operating
system. For Ubuntu Linux, you have to run sudo apt-get install
redis-server.

To run the RQ worker process, you can follow the “Setting Up
Gunicorn and Supervisor” section in Chapter 17 to create a second
Supervisor configuration in which you run rq worker microblog-tasks
instead of gunicorn. If you want to run more than one worker (and you
probably should for production), you can use Supervisor’s numprocs
directive to indicate how many instances you want to have running
concurrently.

22.10.2 Deployment on Heroku

To deploy the application on Heroku you are going to need to add a
Redis service to your account. This is similar to the process that I used
to add the Postgres database. Redis also has a free tier, which can be
added with the following command:

$ heroku addons:create heroku-redis:hobby-dev

The access URL for your new redis service is going to be added to your
Heroku environment as a REDIS_URL variable, which is exactly what the
application expects.

The free plan in Heroku allows one web dyno and one worker dyno, so
you can host a single rq worker along with your application without
incurring into any expenses. For this you will need to declare the
worker in a separate line in your procfile:

web: flask db upgrade; flask translate compile; gunicorn microblog:app

worker: rq worker -u $REDIS_URL microblog-tasks

After you deploy with these changes, you can start the worker with the
following command:

$ heroku ps:scale worker=1

22.10.3 Deployment on Docker

If you are deploying the application to Docker containers, then you
first need to create a Redis container. For this you can use one of the
official Redis images from the Docker registry:

$ docker run --name redis -d -p 6379:6379 redis:3-alpine

When you run your application you will need to link the redis
container and set the REDIS_URL environment variable, similar to how
the MySQL container is linked. Here is a complete command to start
the application including a redis link:

$ docker run --name microblog -d -p 8000:5000 --rm -e SECRET_KEY=my-secret-key \

 -e MAIL_SERVER=smtp.googlemail.com -e MAIL_PORT=587 -e MAIL_USE_TLS=true \

 -e MAIL_USERNAME=<your-gmail-username> -e MAIL_PASSWORD=<your-gmail-password> \

 --link mysql:dbserver --link redis:redis-server \

 -e DATABASE_URL=mysql+pymysql://microblog:<database-password>@dbserver/microblog \

 -e REDIS_URL=redis://redis-server:6379/0 \

 microblog:latest

Finally, you will need to run one or more containers for the RQ
workers. Because the workers are based on the same code as the main
application, you can use the same container image you use for your
application, overriding the start up command so that the worker is
started instead of the web application. Here is an example docker run
command that starts a worker:

$ docker run --name rq-worker -d --rm -e SECRET_KEY=my-secret-key \

 -e MAIL_SERVER=smtp.googlemail.com -e MAIL_PORT=587 -e MAIL_USE_TLS=true \

 -e MAIL_USERNAME=<your-gmail-username> -e MAIL_PASSWORD=<your-gmail-password> \

 --link mysql:dbserver --link redis:redis-server \

 -e DATABASE_URL=mysql+pymysql://microblog:<database-password>@dbserver/microblog \

 -e REDIS_URL=redis://redis-server:6379/0 \

 --entrypoint venv/bin/rq \

 microblog:latest worker -u redis://redis-server:6379/0 microblog-tasks

Overriding the default start up command of a Docker image is a bit
tricky because the command needs to be given in two parts. The –
entrypoint argument takes just the executable name, but the
arguments (if any) need to be given after the image and tag, at the end
of the command line. Note that rq needs to be given as venv/bin/rq so
that it works without having the virtual environment activated.

Chapter 23

Application Programming
Interfaces (APIs)
All the functionality that I built so far for this application is meant for
one specific type of client: the web browser. But what about other
types of clients? If I wanted to build an Android or iOS app, for
example, I have two main ways to go about it. The easiest solution
would be to build a simple app with just a web view component that
fills the entire screen, where the Microblog website is loaded, but this
would offer little benefit over opening the application in the device’s
web browser. A better solution (though much more laborious) would
be to build a native app, but how can this app interact with a server
that only returns HTML pages?

This is the problem area where Application Programming Interfaces
(or APIs) can help. An API is a collection of HTTP routes that are
designed as low-level entry points into the application. Instead of
defining routes and view functions that return HTML to be consumed
by web browsers, APIs allow the client to work directly with the
application’s resources, leaving the decision of how to present the
information to the user entirely to the client. For example, an API in
Microblog could provide user and blog post information to the client,
and it could also allow the user to edit an existing blog post, but only at
the data level, without mixing this logic with HTML.

If you study all the routes currently defined in the application, you will
notice that there are a few that could fit the definition of API I used
above. Did you find them? I’m talking about the few routes that
return JSON, such as the /translate route defined in Chapter 14. This

is a route that takes a text, source and destination languages, all given
in JSON format in a POST request. The response to this request is the
translation of that text, also in JSON format. The server only returns
the requested information, leaving the client with the responsibility to
present this information to the user.

While the JSON routes in the application have an API “feel” to them,
they were designed to support the web application running in the
browser. Consider that if a smartphone app wanted to use these
routes, it would not be able to because they require a logged in user,
and the log in can only happen through an HTML form. In this
chapter I’m going to show how to build APIs that do not rely on the
web browser and make no assumptions about what kind of client
connects to them.

The GitHub links for this chapter are: Browse, Zip, Diff.

https://github.com/miguelgrinberg/microblog/tree/v0.23
https://github.com/miguelgrinberg/microblog/archive/v0.23.zip
https://github.com/miguelgrinberg/microblog/compare/v0.22...v0.23

23.1 REST as a Foundation
of API Design
Some people may strongly disagree with my statement above that
/translate and the other JSON routes are API routes. Others may
agree, with the disclaimer that they consider them a badly designed
API. So what are the characteristics of a well designed API, and why
aren’t the JSON routes in that category?

You may have heard the term REST API. REST, which stands for
Representational State Transfer, is an architecture proposed by Dr.
Roy Fielding in his doctoral dissertation. In his work, Dr. Fielding
presents the six defining characteristics of REST in a fairly abstract
and generic way.

There is no authoritative specification for REST besides Dr. Fielding’s
dissertation, and this leaves a lot of details to be interpreted by the
reader. The topic of whether a given API complies with REST or not is
often the source of heated debates between REST “purists”, who
believe that a REST API must observe all six characteristics and do so
in a very specific way, versus the REST “pragmatists”, who take the
ideas presented by Dr. Fielding in his dissertation as guidelines or
recommendations. Dr. Fielding himself sides with the purist camp,
and has provided some additional insight into his vision in blog posts
and online comments.

The vast majority of APIs currently implemented adhere to a
“pragmatic” REST implementation. This includes most of the APIs
from the “big players”, such as Facebook, GitHub, Twitter, etc. There
are very few public APIs that are unanimously considered to be pure
REST, because most APIs miss certain implementation details that
purists consider must-haves. In spite of the strict views Dr. Fielding

https://en.wikipedia.org/wiki/Representational_state_transfer
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

and other REST purists have on what is or isn’t a REST API, it is
common in the software industry to refer to REST in the pragmatic
sense.

To give you an idea of what’s in the REST dissertation, the following
sections describe the six principles enumerated by Dr. Fielding.

23.1.1 Client-Server

The client-server principle is fairly straightforward, as it simply states
that in a REST API the roles of the client and the server should be
clearly differentiated. In practice, this means that the client and the
server are in separate processes that communicate over a transport,
which in the majority of the cases is the HTTP protocol over a TCP
network.

23.1.2 Layered System

The layered system principle says that when a client needs to
communicate with a server, it may end up connected to an
intermediary and not the actual server. The idea is that for the client,
there should be absolutely no difference in the way it sends requests if
not connected directly to the server, in fact, it may not even know if it
is connected to the target server or not. Likewise, this principle states
that a server may receive client requests from an intermediary and not
the client directly, so it must never assume that the other side of the
connection is the client.

This is an important feature of REST, because being able to add
intermediary nodes allows application architects to design large and
complex networks that are able to satisfy a large volume of requests
through the use of load balancers, caches, proxy servers, etc.

23.1.3 Cache

This principle extends the layered system, by indicating explicitly that
it is allowed for the server or an intermediary to cache responses to
requests that are received often to improve system performance.
There is an implementation of a cache that you are likely familiar with:
the one in all web browsers. The web browser cache layer is often used
to avoid having to request the same files, such as images, over and
over again.

For the purposes of an API, the target server needs to indicate through
the use of cache controls if a response can be cached by intermediaries
as it travels back to the client. Note that because for security reasons
APIs deployed to production must use encryption, caching is usually
not done in an intermediate node unless this node terminates the SSL
connection, or performs decryption and re-encryption.

23.1.4 Code On Demand

This is an optional requirement that states that the server can provide
executable code in responses to the client. Because this principle
requires an agreement between the server and the client on what kind
of executable code the client is able to run, this is rarely used in APIs.
You would think that the server could return JavaScript code for web
browser clients to execute, but REST is not specifically targeted to web
browser clients. Executing JavaScript, for example, could introduce a
complication if the client is an iOS or Android device.

23.1.5 Stateless

The stateless principle is one of the two at the center of most debates
between REST purists and pragmatists. It states that a REST API
should not save any client state to be recalled every time a given client

sends a request. What this means is that none of the mechanisms that
are common in web development to “remember” users as they
navigate through the pages of the application can be used. In a
stateless API, every request needs to include the information that the
server needs to identify and authenticate the client and to carry out the
request. It also means that the server cannot store any data related to
the client connection in a database or other form of storage.

If you are wondering why REST requires stateless servers, the main
reason is that stateless servers are very easy to scale, all you need to do
is run multiple instances of the server behind a load balancer. If the
server stores client state things get more complicated, as you have to
figure out how multiple servers can access and update that state, or
alternatively ensure that a given client is always handled by the same
server, something commonly referred to as sticky sessions.

If you consider again the /translate route discussed in the chapter’s
introduction, you’ll realize that it cannot be considered RESTful,
because the view function associated with that route relies on the
@login_required decorator from Flask-Login, which in turn stores the
logged in state of the user in the Flask user session.

23.1.6 Uniform Interface

The final, most important, most debated and most vaguely
documented REST principle is the uniform interface. Dr. Fielding
enumerates four distinguishing aspects of the REST uniform interface:
unique resource identifiers, resource representations, self-descriptive
messages, and hypermedia.

Unique resource identifiers are achieved by assigning a unique URL to
each resource. For example, the URL associated with a given user can
be /api/users/<user-id>, where <user-id> is the identifier assigned to
the user in the database table’s primary key. This is reasonably well
implemented by most APIs.

The use of resource representations means that when the server and
the client exchange information about a resource, they must use an
agreed upon format. For most modern APIs, the JSON format is used
to build resource representations. An API can choose to support
multiple resource representation formats, and in that case the content
negotiation options in the HTTP protocol are the mechanism by which
the client and the server can agree on a format that both like.

Self-descriptive messages means that requests and responses
exchanged between the clients and the server must include all the
information that the other party needs. As a typical example, the
HTTP request method is used to indicate what operation the client
wants the server to execute. A GET request indicates that the client
wants to retrieve information about a resource, a POST request
indicates the client wants to create a new resource, PUT or PATCH
requests define modifications to existing resources, and DELETE
indicates a request to remove a resource. The target resource is
indicated as the request URL, with additional information provided in
HTTP headers, the query string portion of the URL or the request
body.

The hypermedia requirement is the most polemic of the set, and one
that few APIs implement, and those APIs that do implement it rarely
do so in a way that satisfies REST purists. Since the resources in an
application are all inter-related, this requirement asks that those
relationships are included in the resource representations, so that
clients can discover new resources by traversing relationships, pretty
much in the same way you discover new pages in a web application by
clicking on links that take you from one page to the next. The idea is
that a client could enter an API without any previous knowledge about
the resources in it, and learn about them simply by following
hypermedia links. One of the aspects that complicate the
implementation of this requirement is that unlike HTML and XML,
the JSON format that is commonly used for resource representations
in APIs does not define a standard way to include links, so you are
forced to use a custom structure, or one of the proposed JSON
extensions that try to address this gap, such as JSON-API, HAL,

http://jsonapi.org/
http://stateless.co/hal_specification.html

JSON-LD or similar.

https://json-ld.org/

23.2 Implementing an API
Blueprint
To give you a taste of what is involved in developing an API, I’m going
to add one to Microblog. This is not going to be a complete API, I’m
going to implement all the functions related to users, leaving the
implementation of other resources such as blog posts to the reader as
an exercise.

To keep things organized, and following the structure I described in
Chapter 15, I’m going to create a new blueprint that will contain all the
API routes. So let’s begin by creating the directory where this
blueprint will live:

(venv) $ mkdir app/api

The blueprint’s __init__.py file creates the blueprint object, similar to
the other blueprints in the application:

Listing 23.1: app/api/__init__.py: API blueprint constructor.

from flask import Blueprint

bp = Blueprint('api', __name__)

from app.api import users, errors, tokens

You probably remember that it is sometimes necessary to move
imports to the bottom to avoid circular dependency errors. That is the
reason why the app/api/users.py, app/api/errors.py and
app/api/tokens.py modules (that I’m yet to write) are imported after
the blueprint is created.

The meat of the API is going to be stored in the app/api/users.py

module. The following table summarizes the routes that I’m going to
implement:

HTTP
Method Resource URL Notes

GET /api/users/<id> Return a user.

GET /api/users Return the collection of
all users.

GET /api/users/<id>/followers Return the followers of
this user.

GET /api/users/<id>/followed Return the users this
user is following.

POST /api/users Register a new user
account.

PUT /api/users/<id> Modify a user.

For now I’m going to create a skeleton module with placeholders for
all these routes:

Listing 23.2: app/api/users.py: User API resource placeholders.

from app.api import bp

@bp.route('/users/<int:id>', methods=['GET'])

def get_user(id):

 pass

@bp.route('/users', methods=['GET'])

def get_users():

 pass

@bp.route('/users/<int:id>/followers', methods=['GET'])

def get_followers(id):

 pass

@bp.route('/users/<int:id>/followed', methods=['GET'])

def get_followed(id):

 pass

@bp.route('/users', methods=['POST'])

def create_user():

 pass

@bp.route('/users/<int:id>', methods=['PUT'])

def update_user(id):

 pass

The app/api/errors.py module is going to define a few helper
functions that deal with error responses. But for now, I’m also going
to use a placeholder that I will fill out later:

Listing 23.3: app/api/errors.py: Error handling placeholder.

def bad_request():

 pass

The app/api/tokens.py is the module where the authentication
subsystem is going to be defined. This is going to provide an
alternative way for clients that are not web browsers to log in. For
now, I’m going to write a placeholder for this module as well:

Listing 23.4: app/api/tokens.py: Token handling placeholder.

def get_token():

 pass

def revoke_token():

 pass

The new API blueprint needs to be registered in the application factory
function:

Listing 23.5: app/__init__.py: Register API blueprint with the
application.

...

def create_app(config_class=Config):

 app = Flask(__name__)

 # ...

 from app.api import bp as api_bp

 app.register_blueprint(api_bp, url_prefix='/api')

 # ...

23.3 Representing Users as
JSON Objects
The first aspect to consider when implementing an API is to decide
what the representation of its resources is going to be. I’m going to
implement an API that works with users, so a representation for my
user resources is what I need to decide on. After some brainstorming,
I came up with the following JSON representation:

{

 "id": 123,

 "username": "susan",

 "password": "my-password",

 "email": "susan@example.com",

 "last_seen": "2017-10-20T15:04:27Z",

 "about_me": "Hello, my name is Susan!",

 "post_count": 7,

 "follower_count": 35,

 "followed_count": 21,

 "_links": {

 "self": "/api/users/123",

 "followers": "/api/users/123/followers",

 "followed": "/api/users/123/followed",

 "avatar": "https://www.gravatar.com/avatar/..."

 }

}

Many of the fields are directly coming from the user database model.
The password field is special in that it is only going to be used when a
new user is registered. As you remember from Chapter 5, user
passwords are not stored in the database, only a hash is, so password
are never returned. The email field is also treated specially, because I
don’t want to expose the email addresses of users. The email field is
only going to be returned when users request their own entry, but not
when they retrieve entries from other users. The post_count,
follower_count and followed_count fields are “virtual” fields that do
not exist as fields in the database, but are provided to the client as a
convenience. This is a great example that demonstrates that a

resource representation does not need to match how the actual
resource is defined in the server.

Note the _links section, which implements the hypermedia
requirements. The links that are defined include links to the current
resource, the list of users that follow this user, the list of users followed
by the user, and finally a link to the user’s avatar image. In the future,
if I decide to add posts to this API, a link to the list of posts by the user
should be included here as well.

One nice thing about the JSON format is that it always translates to a
representation as a Python dictionary or list. The json package from
the Python standard library takes care of converting the Python data
structures to and from JSON. So to generate these representations,
I’m going to add a method to the User model called to_dict(), which
returns a Python dictionary:

Listing 23.6: app/models.py: User model to representation.

from flask import url_for

...

class User(UserMixin, db.Model):

 # ...

 def to_dict(self, include_email=False):

 data = {

 'id': self.id,

 'username': self.username,

 'last_seen': self.last_seen.isoformat() + 'Z',

 'about_me': self.about_me,

 'post_count': self.posts.count(),

 'follower_count': self.followers.count(),

 'followed_count': self.followed.count(),

 '_links': {

 'self': url_for('api.get_user', id=self.id),

 'followers': url_for('api.get_followers', id=self.id),

 'followed': url_for('api.get_followed', id=self.id),

 'avatar': self.avatar(128)

 }

 }

 if include_email:

 data['email'] = self.email

 return data

This method should be mostly self-explanatory, the dictionary with the
user representation I settled on is simply generated and returned. As I

mentioned above, the email field needs special treatment, because I
want to include the email only when users request their own data. So
I’m using the include_email flag to determine if that field gets included
in the representation or not.

Note how the last_seen field is generated. For date and time fields,
I’m going to use the ISO 8601 format, which Python’s datetime can
generate through the isoformat() method. But because I’m using
naive datetime objects that are UTC but do not have the timezone
recorded in their state, I need to add the Z at the end, which is ISO
8601’s timezone code for UTC.

Finally, see how I implemented the hypermedia links. For the three
links that point to other application routes I use url_for() to generate
the URLs (which currently point to the placeholder view functions I
defined in app/api/users.py). The avatar link is special because it is a
Gravatar URL, external to the application. For this link I use the same
avatar() method that I’ve used to render the avatars in web pages.

The to_dict() method converts a user object to a Python
representation, which will then be converted to JSON. I also need look
at the reverse direction, where the client passes a user representation
in a request and the server needs to parse it and convert it to a User
object. Here is the from_dict() method that achieves the conversion
from a Python dictionary to a model:

Listing 23.7: app/models.py: Representation to User model.

class User(UserMixin, db.Model):

 # ...

 def from_dict(self, data, new_user=False):

 for field in ['username', 'email', 'about_me']:

 if field in data:

 setattr(self, field, data[field])

 if new_user and 'password' in data:

 self.set_password(data['password'])

In this case I decided to use a loop to import any of the fields that the
client can set, which are username, email and about_me. For each field I

https://en.wikipedia.org/wiki/ISO_8601

check if I there is a value provided in the data argument, and if there is
I use Python’s setattr() to set the new value in the corresponding
attribute for the object.

The password field is treated as a special case, because it isn’t a field in
the object. The new_user argument determines if this is a new user
registration, which means that a password is included. To set the
password in the user model, I call the set_password() method, which
creates the password hash.

23.4 Representing
Collections of Users
In addition to working with single resource representations, this API is
going to need a representation for a group of users. This is going to be
the format used when the client requests the list of users or followers,
for example. Here is the representation for a collection of users:

{

 "items": [

 { ... user resource ... },

 { ... user resource ... },

 ...

],

 "_meta": {

 "page": 1,

 "per_page": 10,

 "total_pages": 20,

 "total_items": 195

 },

 "_links": {

 "self": "http://localhost:5000/api/users?page=1",

 "next": "http://localhost:5000/api/users?page=2",

 "prev": null

 }

}

In this representation, items is the list of user resources, each defined
as described in the previous section. The _meta section includes
metadata for the collection that the client might find useful in
presenting pagination controls to the user. The _links section defines
relevant links, including a link to the collection itself, and the previous
and next page links, also to help the client paginate the listing.

Generating the representation of a collection of users is tricky because
of the pagination logic, but the logic is going to be common to other
resources I may want to add to this API in the future, so I’m going to
implement this representation in a generic way that I can then apply to
other models. Back in Chapter 16 I was in a similar situation with full-

text search indexes, another feature that I wanted to implement
generically so that it can be applied to any models. The solution that I
used was to implement a SearchableMixin class that any models that
need a full-text index can inherit from. I’m going to use the same idea
for this, so here is a new mixin class that I named PaginatedAPIMixin:

Listing 23.8: app/models.py: Paginated representation mixin class.

class PaginatedAPIMixin(object):

 @staticmethod

 def to_collection_dict(query, page, per_page, endpoint, **kwargs):

 resources = query.paginate(page, per_page, False)

 data = {

 'items': [item.to_dict() for item in resources.items],

 '_meta': {

 'page': page,

 'per_page': per_page,

 'total_pages': resources.pages,

 'total_items': resources.total

 },

 '_links': {

 'self': url_for(endpoint, page=page, per_page=per_page,

 **kwargs),

 'next': url_for(endpoint, page=page + 1, per_page=per_page,

 **kwargs) if resources.has_next else None,

 'prev': url_for(endpoint, page=page - 1, per_page=per_page,

 **kwargs) if resources.has_prev else None

 }

 }

 return data

The to_collection_dict() method produces a dictionary with the user
collection representation, including the items, _meta and _links
sections. You may need to review the method carefully to understand
how it works. The first three arguments are a Flask-SQLAlchemy
query object, a page number and a page size. These are the arguments
that determine what are the items that are going to be returned. The
implementation uses the paginate() method of the query object to
obtain a page worth of items, like I did with posts in the index, explore
and profile pages of the web application.

The complicated part is in generating the links, which include a self-
reference and the links to the next and previous pages. I wanted to
make this function generic, so I could not, for example, use
url_for(’api.get_users’, id=id, page=page) to generate the self link.

The arguments to url_for() are going to be dependent on the
particular collection of resources, so I’m going to rely on the caller
passing in the endpoint argument the view function that needs to be
sent to url_for(). And because many routes have arguments, I also
need to capture additional keyword arguments in kwargs, and pass
those to url_for() as well. The page and per_page query string
argument are given explicitly because these control pagination for all
API routes.

This mixin class needs to be added to the User model as a parent class:

Listing 23.9: app/models.py: Add PaginatedAPIMixin to User
model.

class User(PaginatedAPIMixin, UserMixin, db.Model):

 # ...

In the case of collections I’m not going to need the reverse direction
because I’m not going to have any routes that require the client to send
lists of users.

23.5 Error Handling
The error pages that I defined in Chapter 7 are only appropriate for a
user that is interacting with the application using a web browser.
When an API needs to return an error, it needs to be a “machine
friendly” type of error, something that the client application can easily
interpret. So in the same way I defined representations for my API
resources in JSON, now I’m going to decide on a representation for
API error messages. Here is the basic structure that I’m going to use:

{

 "error": "short error description",

 "message": "error message (optional)"

}

In addition to the payload of the error, I will use the status codes from
the HTTP protocol to indicate the general class of the error. To help
me generate these error responses, I’m going to write the
error_response() function in app/api/errors.py:

Listing 23.10: app/api/errors.py: Error responses.

from flask import jsonify

from werkzeug.http import HTTP_STATUS_CODES

def error_response(status_code, message=None):

 payload = {'error': HTTP_STATUS_CODES.get(status_code, 'Unknown error')}

 if message:

 payload['message'] = message

 response = jsonify(payload)

 response.status_code = status_code

 return response

This function uses the handy HTTP_STATUS_CODES dictionary from
Werkzeug (a core dependency of Flask) that provides a short
descriptive name for each HTTP status code. I’m using these names
for the error field in my error representations, so that I only need to
worry about the numeric status code and the optional long

description. The jsonify() function returns a Flask Response object
with a default status code of 200, so after I create the response, I set
the status code to the correct one for the error.

The most common error that the API is going to return is going to be
the code 400, which is the error for “bad request”. This is the error
that is used when the client sends a request that has invalid data in it.
To make it even easier to generate this error, I’m going to add a
dedicated function for it that only requires the long descriptive
message as an argument. This is the bad_request() placeholder that I
added earlier:

Listing 23.11: app/api/errors.py: Bad request responses.

...

def bad_request(message):

 return error_response(400, message)

23.6 User Resource
Endpoints
The support that I need to work with JSON representations of users is
now complete, so I’m ready to start coding the API endpoints.

23.6.1 Retrieving a User

Let’s start with the request to retrieve a single user, given by id:

Listing 23.12: app/api/users.py: Return a user.

from flask import jsonify

from app.models import User

@bp.route('/users/<int:id>', methods=['GET'])

def get_user(id):

 return jsonify(User.query.get_or_404(id).to_dict())

The view function receives the id for the requested user as a dynamic
argument in the URL. The get_or_404() method of the query object is
a very useful variant of the get() method you have seen before, that
also returns the object with the given id if it exists, but instead of
returning None when the id does not exist, it aborts the request and
returns a 404 error to the client. The advantage of get_or_404() over
get() is that it removes the need to check the result of the query,
simplifying the logic in view functions.

The to_dict() method I added to User is used to generate the
dictionary with the resource representation for the selected user, and
then Flask’s jsonify() function converts that dictionary to JSON
format to return to the client.

If you want to see how this first API route works, start the server and
then type the following URL in your browser’s address bar:

http://localhost:5000/api/users/1

This should show you the first user, rendered in JSON format. Also
try to use a large id value, to see how the get_or_404() method of the
SQLAlchemy query object triggers a 404 error (I will later show you
how to extend the error handling so that these errors are also returned
in JSON format).

To test this new route, I’m going to install HTTPie, a command-line
HTTP client written in Python that makes it easy to send API requests:

(venv) $ pip install httpie

I can now request information about the user with a id of 1 (which is
probably yourself) with the following command:

(venv) $ http GET http://localhost:5000/api/users/1

HTTP/1.0 200 OK

Content-Length: 457

Content-Type: application/json

Date: Mon, 27 Nov 2017 20:19:01 GMT

Server: Werkzeug/0.12.2 Python/3.6.3

{

 "_links": {

 "avatar": "https://www.gravatar.com/avatar/993c...2724?d=identicon&s=128",

 "followed": "/api/users/1/followed",

 "followers": "/api/users/1/followers",

 "self": "/api/users/1"

 },

 "about_me": "Hello! I'm the author of the Flask Mega-Tutorial.",

 "followed_count": 0,

 "follower_count": 1,

 "id": 1,

 "last_seen": "2017-11-26T07:40:52.942865Z",

 "post_count": 10,

 "username": "miguel"

}

23.6.2 Retrieving Collections of Users

To return the collection of all users, I can now rely on the

https://httpie.org/

to_collection_dict() method of PaginatedAPIMixin:

Listing 23.13: app/api/users.py: Return the collection of all users.

from flask import request

@bp.route('/users', methods=['GET'])

def get_users():

 page = request.args.get('page', 1, type=int)

 per_page = min(request.args.get('per_page', 10, type=int), 100)

 data = User.to_collection_dict(User.query, page, per_page, 'api.get_users')

 return jsonify(data)

For this implementation I first extract page and per_page from the
query string of the request, using the defaults of 1 and 10 respectively
if they are not defined. The per_page has additional logic that caps it at
100. Giving the client control to request really large pages is not a
good idea, as that can cause performance problems for the server. The
page and per_page arguments are then passed to the
to_collection_query() method, along with the query, which in this
case is simply User.query, the most generic query that returns all
users. The last argument is api.get_users, which is the endpoint
name that I need for the three links that are used in the
representation.

To test this endpoint with HTTPie, use the following command:

(venv) $ http GET http://localhost:5000/api/users

The next two endpoints are the ones that return the follower and
followed users. These are fairly similar to the one above:

Listing 23.14: app/api/users.py: Return followers and followed
users.

@bp.route('/users/<int:id>/followers', methods=['GET'])

def get_followers(id):

 user = User.query.get_or_404(id)

 page = request.args.get('page', 1, type=int)

 per_page = min(request.args.get('per_page', 10, type=int), 100)

 data = User.to_collection_dict(user.followers, page, per_page,

 'api.get_followers', id=id)

 return jsonify(data)

@bp.route('/users/<int:id>/followed', methods=['GET'])

def get_followed(id):

 user = User.query.get_or_404(id)

 page = request.args.get('page', 1, type=int)

 per_page = min(request.args.get('per_page', 10, type=int), 100)

 data = User.to_collection_dict(user.followed, page, per_page,

 'api.get_followed', id=id)

 return jsonify(data)

Since these two routes are specific to a user, they have the id dynamic
argument. The id is used to get the user from the database, and then
to provide the user.followers and user.followed relationship based
queries to to_collection_dict(), so hopefully now you can see why
spending a little bit of extra time and designing this method in a
generic way really pays off. The last two arguments to
to_collection_dict() are the endpoint name, and the id, which the
method is going to take as an extra keyword argument in kwargs, and
then pass it to url_for() when generating the links section of the
representation.

Similar to the previous example, you can exercise these two routes
with HTTPie as follows:

(venv) $ http GET http://localhost:5000/api/users/1/followers

(venv) $ http GET http://localhost:5000/api/users/1/followed

I should note that thanks to hypermedia, you do not need to
remember these URLs, as they are included in the _links section of
the user representation.

23.6.3 Registering New Users

The POST request to the /users route is going to be used to register new
user accounts. You can see the implementation of this route below:

Listing 23.15: app/api/users.py: Register a new user.

from flask import url_for

from app import db

from app.api.errors import bad_request

@bp.route('/users', methods=['POST'])

def create_user():

 data = request.get_json() or {}

 if 'username' not in data or 'email' not in data or 'password' not in data:

 return bad_request('must include username, email and password fields')

 if User.query.filter_by(username=data['username']).first():

 return bad_request('please use a different username')

 if User.query.filter_by(email=data['email']).first():

 return bad_request('please use a different email address')

 user = User()

 user.from_dict(data, new_user=True)

 db.session.add(user)

 db.session.commit()

 response = jsonify(user.to_dict())

 response.status_code = 201

 response.headers['Location'] = url_for('api.get_user', id=user.id)

 return response

This request is going to accept a user representation in JSON format
from the client, provided in the request body. Flask provides the
request.get_json() method to extract the JSON from the request and
return it as a Python structure. This method returns None if JSON data
isn’t found in the request, so I can ensure that I always get a dictionary
using the expression request.get_json() or {}.

Before I can use the data I need to ensure that I’ve got all the
information, so I start by checking that the three mandatory fields are
included. These are username, email and password. If any of those are
missing, then I use the bad_request() helper function from the
app/api/errors.py module to return an error to the client. In addition
to that check, I need to make sure that the username and email fields
are not already used by another user, so for that I try to load a user
from the database by the username and emails provided, and if any of
those return a valid user, I also return an error back to the client.

Once I’ve passed the data validation, I can easily create a user object
and add it to the database. To create the user I rely on the from_dict()
method in the User model. The new_user argument is set to True, so
that it also accepts the password field which is normally not part of the
user representation.

The response that I return for this request is going to be the
representation of the new user, so to_dict() generates that payload.

The status code for a POST request that creates a resource should be
201, the code that is used when a new entity has been created. Also,
the HTTP protocol requires that a 201 response includes a Location
header that is set to the URL of the new resource.

Below you can see how to register a new user from the command line
through HTTPie:

(venv) $ http POST http://localhost:5000/api/users username=alice password=dog \

 email=alice@example.com "about_me=Hello, my name is Alice!"

23.6.4 Editing Users

The last endpoint that I’m going to use in my API is the one that
modifies an existing user:

Listing 23.16: app/api/users.py: Modify a user.

@bp.route('/users/<int:id>', methods=['PUT'])

def update_user(id):

 user = User.query.get_or_404(id)

 data = request.get_json() or {}

 if 'username' in data and data['username'] != user.username and \

 User.query.filter_by(username=data['username']).first():

 return bad_request('please use a different username')

 if 'email' in data and data['email'] != user.email and \

 User.query.filter_by(email=data['email']).first():

 return bad_request('please use a different email address')

 user.from_dict(data, new_user=False)

 db.session.commit()

 return jsonify(user.to_dict())

For this request I receive a user id as a dynamic part of the URL, so I
can load the designated user and return a 404 error if it is not found.
Note that there is no authentication yet, so for now the API is going to
allow users to make changes to the accounts of any other users. This is
going to be addressed later when authentication is added.

Like in the case of a new user, I need to validate that the username and
email fields provided by the client do not collide with other users
before I can use them, but in this case the validation is a bit more

tricky. First of all, these fields are optional in this request, so I need to
check that a field is present. The second complication is that the client
may be providing the same value, so before I check if the username or
email are taken I need to make sure they are different than the current
ones. If any of these validation checks fail, then I return a 400 error
back to the client, as before.

Once the data has been validated, I can use the from_dict() method of
the User model to import all the data provided by the client, and then
commit the change to the database. The response from this request
returns the updated user representation to the user, with a default 200
status code.

Here is an example request that edits the about_me field with HTTPie:

(venv) $ http PUT http://localhost:5000/api/users/2 "about_me=Hi, I am Miguel"

23.7 API Authentication
The API endpoints I added in the previous section are currently open
to any clients. Obviously they need to be available to registered users
only, and to do that I need to add authentication and authorization, or
“AuthN” and “AuthZ” for short. The idea is that requests sent by
clients provide some sort of identification, so that the server knows
what user the client is representing, and can verify if the requested
action is allowed or not for that user.

The most obvious way to protect these API endpoints is to use the
@login_required decorator from Flask-Login, but that approach has
some problems. When the decorator detects a non-authenticated user,
it redirects the user to a HTML login page. In an API there is no
concept of HTML or login pages, if a client sends a request with invalid
or missing credentials, the server has to refuse the request returning a
401 status code. The server can’t assume that the API client is a web
browser, or that it can handle redirects, or that it can render and
process HTML login forms. When the API client receives the 401
status code, it knows that it needs to ask the user for credentials, but
how it does that is really not the business of the server.

23.7.1 Tokens In the User Model

For the API authentication needs, I’m going to use a token
authentication scheme. When a client wants to start interacting with
the API, it needs to request a temporary token, authenticating with a
username and password. The client can then send API requests
passing the token as authentication, for as long as the token is valid.
Once the token expires, a new token needs to be requested. To
support user tokens, I’m going to expand the User model:

Listing 23.17: app/models.py: Support for user tokens.

import base64

from datetime import datetime, timedelta

import os

class User(UserMixin, PaginatedAPIMixin, db.Model):

 # ...

 token = db.Column(db.String(32), index=True, unique=True)

 token_expiration = db.Column(db.DateTime)

 # ...

 def get_token(self, expires_in=3600):

 now = datetime.utcnow()

 if self.token and self.token_expiration > now + timedelta(seconds=60):

 return self.token

 self.token = base64.b64encode(os.urandom(24)).decode('utf-8')

 self.token_expiration = now + timedelta(seconds=expires_in)

 db.session.add(self)

 return self.token

 def revoke_token(self):

 self.token_expiration = datetime.utcnow() - timedelta(seconds=1)

 @staticmethod

 def check_token(token):

 user = User.query.filter_by(token=token).first()

 if user is None or user.token_expiration < datetime.utcnow():

 return None

 return user

With this change I’m adding a token attribute to the user model, and
because I’m going to need to search the database by it I make it unique
and indexed. I also added token_expiration, which has the date and
time at which the token expires. This is so that a token does not
remain valid for a long period of time, which can become a security
risk.

I created three methods to work with these tokens. The get_token()
method returns a token for the user. The token is generated as a
random string that is encoded in base64 so that all the characters are
in the readable range. Before a new token is created, this method
checks if a currently assigned token has at least a minute left before
expiration, and in that case the existing token is returned.

When working with tokens it is always good to have a strategy to
revoke a token immediately, instead of only relying on the expiration

date. This is a security best practice that is often overlooked. The
revoke_token() method makes the token currently assigned to the user
invalid, simply by setting the expiration date to one second before the
current time.

The check_token() method is a static method that takes a token as
input and returns the user this token belongs to as a response. If the
token is invalid or expired, the method returns None.

Because I have made changes to the database, I need to generate a new
database migration and then upgrade the database with it:

(venv) $ flask db migrate -m "user tokens"

(venv) $ flask db upgrade

23.7.2 Token Requests

When you write an API you have to consider that your clients are not
always going to be web browsers connected to the web application.
The real power of APIs comes when standalone clients such as
smartphone apps, or even browser-based single page applications can
have access to backend services. When these specialized clients need
to access API services, they begin by requesting a token, which is the
counterpart to the login form in the traditional web application.

To simplify the interactions between client and server when token
authentication is used, I’m going to use a Flask extension called Flask-
HTTPAuth. Flask-HTTPAuth is installed with pip:

(venv) $ pip install flask-httpauth

Flask-HTTPAuth supports a few different authentication mechanisms,
all API friendly. To begin, I’m going to use HTTP Basic
Authentication, in which the client sends the user credentials in a
standard Authorization HTTP Header. To integrate with Flask-
HTTPAuth, the application needs to provide two functions: one that
defines the logic to check the username and password provided by the

https://flask-httpauth.readthedocs.io/
https://en.wikipedia.org/wiki/Basic_access_authentication
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization

user, and another that returns the error response in the case of an
authentication failure. These functions are registered with Flask-
HTTPAuth through decorators, and then are automatically called by
the extension as needed during the authentication flow. You can see
the implementation below:

Listing 23.18: app/api/auth.py: Basic authentication support.

from flask_httpauth import HTTPBasicAuth

from app.models import User

from app.api.errors import error_response

basic_auth = HTTPBasicAuth()

@basic_auth.verify_password

def verify_password(username, password):

 user = User.query.filter_by(username=username).first()

 if user and user.check_password(password):

 return user

@basic_auth.error_handler

def basic_auth_error(status):

 return error_response(status)

The HTTPBasicAuth class from Flask-HTTPAuth is the one that
implements the basic authentication flow. The two required functions
are configured through the verify_password and error_handler
decorators respectively.

The verification function receives the username and password that the
client provided and returns the authenticated user if the credentials
are valid or None if not. To check the password I rely on the
check_password() method of the User class, which is also used by
Flask-Login during authentication for the web application. The
authenticated user will then be available as
basic_auth.current_user(), so that it can be used in the API view
functions.

The error handler function returns a standard error response
generated by the error_response() function in app/api/errors.py.
The status argument is the HTTP status code, which in the case of
invalid authentication is going to be 401. The 401 error is defined in
the HTTP standard as the “Unauthorized” error. HTTP clients know

that when they receive this error the request that they sent needs to be
resent with valid credentials.

Now I have basic authentication support implemented, so I can add
the token retrieval route that clients will invoke when they need a
token:

Listing 23.19: app/api/tokens.py: Generate user tokens.

from flask import jsonify

from app import db

from app.api import bp

from app.api.auth import basic_auth

@bp.route('/tokens', methods=['POST'])

@basic_auth.login_required

def get_token():

 token = basic_auth.current_user().get_token()

 db.session.commit()

 return jsonify({'token': token})

This view function is decorated with the @basic_auth.login_required
decorator from the HTTPBasicAuth instance, which will instruct Flask-
HTTPAuth to verify authentication (through the verification function I
defined above) and only allow the function to run when the provided
credentials are valid. The implementation of this view function relies
on the get_token() method of the user model to produce the token. A
database commit is issued after the token is generated to ensure that
the token and its expiration are written back to the database.

If you try to send a POST request to the tokens API route, this is what
happens:

(venv) $ http POST http://localhost:5000/api/tokens

HTTP/1.0 401 UNAUTHORIZED

Content-Length: 30

Content-Type: application/json

Date: Mon, 27 Nov 2017 20:01:00 GMT

Server: Werkzeug/0.12.2 Python/3.6.3

WWW-Authenticate: Basic realm="Authentication Required"

{

 "error": "Unauthorized"

}

The HTTP response includes the 401 status code, and the error

payload that I defined in my basic_auth_error() function. Here is the
same request, this time including basic authentication credentials:

(venv) $ http --auth <username>:<password> POST http://localhost:5000/api/tokens

HTTP/1.0 200 OK

Content-Length: 50

Content-Type: application/json

Date: Mon, 27 Nov 2017 20:01:22 GMT

Server: Werkzeug/0.12.2 Python/3.6.3

{

 "token": "pC1Nu9wwyNt8VCj1trWilFdFI276AcbS"

}

Now the status code is 200, which is the code for a successful request,
and the payload includes a newly generated token for the user. Note
that when you send this request you will need to replace <username>:
<password> with your own credentials. The username and password
need to be provided with a colon as separator.

23.7.3 Protecting API Routes with Tokens

The clients can now request a token to use with the API endpoints, so
what’s left is to add token verification to those endpoints. This is
something that Flask-HTTPAuth can also handle for me. I need to
create a second authentication instance based on the HTTPTokenAuth
class, and provide a token verification callback:

Listing 23.20: app/api/auth.py: Token authentication support.

...

from flask_httpauth import HTTPTokenAuth

...

token_auth = HTTPTokenAuth()

...

@token_auth.verify_token

def verify_token(token):

 return User.check_token(token) if token else None

@token_auth.error_handler

def token_auth_error(status):

 return error_response(status)

When using token authentication, Flask-HTTPAuth uses a
verify_token decorated function, but other than that, token
authentication works in the same way as basic authentication. My
token verification function uses User.check_token() to locate the user
that owns the provided token and return it. As before, a None return
causes the client to be rejected.

To protect API routes with tokens, the @token_auth.login_required
decorator needs to be added:

Listing 23.21: app/api/users.py: Protect user routes with token
authentication.

from flask import abort

from app.api.auth import token_auth

@bp.route('/users/<int:id>', methods=['GET'])

@token_auth.login_required

def get_user(id):

 # ...

@bp.route('/users', methods=['GET'])

@token_auth.login_required

def get_users():

 # ...

@bp.route('/users/<int:id>/followers', methods=['GET'])

@token_auth.login_required

def get_followers(id):

 # ...

@bp.route('/users/<int:id>/followed', methods=['GET'])

@token_auth.login_required

def get_followed(id):

 # ...

@bp.route('/users', methods=['POST'])

def create_user():

 # ...

@bp.route('/users/<int:id>', methods=['PUT'])

@token_auth.login_required

def update_user(id):

 if token_auth.current_user().id != id:

 abort(403)

 # ...

Note that the decorator is added to all the API view functions except
create_user(), which obviously cannot accept authentication since the

user that will request the token needs to be created first. Also note
how the PUT request that modifies users has an additional check that
prevents a user from trying to modify another user’s account. If I find
that the requested user id does not match the id of the authenticated
user, then I return a 403 error response, which indicates that the
client does not have permission to carry out the requested operation.

If you send a request to any of these endpoints as shown previously,
you will get back a 401 error response. To gain access, you need to add
the Authorization header, with a token that you received from a
request to /api/tokens. Flask-HTTPAuth expects the token to be sent
as a “bearer” token, which isn’t directly supported by HTTPie. For
basic authentication with username and password, HTTPie offers a –
auth option, but for tokens the header needs to be explicitly provided.
Here is the syntax to send the bearer token:

(venv) $ http GET http://localhost:5000/api/users/1 \

 "Authorization:Bearer pC1Nu9wwyNt8VCj1trWilFdFI276AcbS"

23.7.4 Revoking Tokens

The last token related feature that I’m going to implement is the token
revocation, which you can see below:

Listing 23.22: app/api/tokens.py: Revoke tokens.

from app.api.auth import token_auth

@bp.route('/tokens', methods=['DELETE'])

@token_auth.login_required

def revoke_token():

 token_auth.current_user().revoke_token()

 db.session.commit()

 return '', 204

Clients can send a DELETE request to the /tokens URL to invalidate the
token. The authentication for this route is token based, in fact the
token sent in the Authorization header is the one being revoked. The

revocation itself uses the helper method in the User class, which resets
the expiration date on the token. The database session is committed
so that this change is written to the database. The response from this
request does not have a body, so I can return an empty string. A
second value in the return statement sets the status code of the
response to 204, which is the code to use for successful requests that
have no response body.

Here is an example token revocation request sent from HTTPie:

(venv) $ http DELETE http://localhost:5000/api/tokens \

 Authorization:"Bearer pC1Nu9wwyNt8VCj1trWilFdFI276AcbS"

23.8 API Friendly Error
Messages
Do you recall what happened early in this chapter when I asked you to
send an API request from the browser with an invalid user URL? The
server returned a 404 error, but this error was formatted as the
standard 404 HTML error page. Many of the errors the API might
need to return can be overriden with JSON versions in the API
blueprint, but there are some errors handled by Flask that still go
through the error handlers that are globally registered for the
application, and these continue to return HTML.

The HTTP protocol supports a mechanism by which the client and the
server can agree on the best format for a response, called content
negotiation. The client needs to send an Accept header with the
request, indicating the format preferences. The server then looks at
the list and responds using the best format it supports from the list
offered by the client.

What I want to do is modify the global application error handlers so
that they use content negotiation to reply in HTML or JSON according
to the client preferences. This can be done using the
request.accept_mimetypes object from Flask:

Listing 23.23: app/errors/handlers.py: Content negotiation for
error responses.

from flask import render_template, request

from app import db

from app.errors import bp

from app.api.errors import error_response as api_error_response

def wants_json_response():

 return request.accept_mimetypes['application/json'] >= \

 request.accept_mimetypes['text/html']

@bp.app_errorhandler(404)

def not_found_error(error):

 if wants_json_response():

 return api_error_response(404)

 return render_template('errors/404.html'), 404

@bp.app_errorhandler(500)

def internal_error(error):

 db.session.rollback()

 if wants_json_response():

 return api_error_response(500)

 return render_template('errors/500.html'), 500

The wants_json_response() helper function compares the preference
for JSON or HTML selected by the client in their list of preferred
formats. If JSON rates higher than HTML, then I return a JSON
response. Otherwise I’ll return the original HTML responses based on
templates. For the JSON responses I’m going to import the
error_response helper function from the API blueprint, but here I’m
going to rename it to api_error_response() so that it is clear what it
does and where it comes from.

	Frontmatter
	Hello, World!
	Templates
	Web Forms
	Database
	User Logins
	Profile Page and Avatars
	Error Handling
	Followers
	Pagination
	Email Support
	Facelift
	Dates and Times
	I18n and L10n
	Ajax
	A Better Application Structure
	Full-Text Search
	Deployment on Linux
	Deployment on Heroku
	Deployment on Docker Containers
	Some JavaScript Magic
	User Notifications
	Background Jobs
	Application Programming Interfaces (APIs)

